SpaceX's derelict rocket will crash and create a worrying new Moon crater - The Next Web | Canada News Media
Connect with us

Science

SpaceX's derelict rocket will crash and create a worrying new Moon crater – The Next Web

Published

 on


It’s not often that the sudden appearance of a new impact crater on the Moon can be predicted, but it’s going to happen on March 4, when a derelict SpaceX Falcon 9 rocket will crash into it.

The rocket launched in 2015, carrying Nasa’s Deep Space Climate Observatory (DSCOVR) probe into a position 1.5 million kilometers from the Earth, facing the Sun. But the expended upper stage of the rocket had insufficient speed to escape into an independent orbit around the Sun, and was abandoned without an option to steer back into the Earth’s atmosphere. That would be normal practice, allowing stages to burn up on re-entry, thus reducing the clutter in near-Earth space caused by dangerous junk.

Time lapse movie made from 5 hours of images, recorded by DSCOVR.

Since February 2015, the 14 meters long, derelict upper stage, massing nearly four tonnes, has therefore been in a wide orbit about the Earth. Its precise movements have been hard to predict, because they were influenced by lunar and solar gravity as well as the Earth’s.

But we can now tell that it is going to hit the Moon on March 4 at a speed of about 2.6 kilometres per second. This will make a crater about 19 meters in diameter – a prospect that has provoked outrage in social media circles from people who are appalled that human negligence will disfigure the Moon in this way.

Misplaced concern

It is, however, surely more environmentally friendly for a dead rocket to end up on the Moon than being scattered through Earth’s upper atmosphere in the form of metal oxide particles, which is what happens during a re-entry burn up. The Moon also lacks an atmosphere to shield it from space debris, so it is accumulating naturally occurring impact craters all the time.

A 19 metre lunar crater made by a natural impact on 17 March 2013. NASA/Goddard Space Flight Center/Arizona State University

The Lunar Reconnaissance Orbiter has already imaged a 19 meter crater formed when a half a tonne lump of asteroid rock traveling about ten times faster than the Falcon 9 struck the surface in March 2013. Over the past decade, hundreds of smaller impacts, by chunks of rock weighing as little as half a kilogram, have been spotted by Nasa’s lunar impact monitoring project.


The coming impact will be on the lunar far side, so we won’t be able to see it happen. But spacecraft orbiting the Moon will be able to image the impact crater afterward. Will we learn anything new? There have been several previous deliberate crashes onto the Moon, so we know what to expect.

For example, the considerably larger upper stages of rockets used in the Apollo landing missions were crashed so that vibrations detected by seismometers installed on the surface could be used to investigate the lunar interior. The Apollo seismometers were turned off long ago, and is not clear whether the seismometer on China’s Chang’e 4 far side lunar lander will be able to provide any useful data this time.

30 metre wide crater on the Moon from the Apollo 13 Saturn IVB upper stage. NASA/GSFC/Arizona State University

A precisely targeted, deliberate crash was also achieved in 2009 when Nasa’s LCROSS mission sent a projectile into a permanently shadowed polar crater – making a smaller crater on its icy floor and throwing up a plume that proved to contain the hoped for water vapor.

Biological contamination

So I’m not bothered by one more crater being made on the Moon. It already has something like half a billion craters that are ten meters or more in diameter. What we should worry about is contaminating the Moon with living microbes, or molecules that could in the future be mistaken as evidence of former life on the Moon.

Most nations have signed up to planetary protection protocols that seek to minimize the risk of biological contamination from Earth to another body (and also from another body back to Earth). The protocols are in place for reasons both ethical and scientific. The ethical argument is that it would not be right to put at risk any ecosystem that may exist on another body by introducing organisms from Earth that might thrive there. The scientific argument is that we want to study and understand the natural conditions on each other body, so we should not risk compromising or destroying them by wanton contamination.

The biggest recent breach of the COSPAR protocols was in 2019 when the privately funded Israeli lunar lander Beresheet crashed on the Moon, carrying DNA samples and thousands of tardigrades. Those are half millimeter long organisms that can tolerate, though not be active in, the vacuum of space. These, and presumably also the microbes that lived in their guts, are now scattered across the Beresheet crash site.

Most likely none of these will end up in a niche where there is enough water for them to revive and become active, but that is not a risk we should be taking. The DSCOVR Falcon 9 was not sterile upon launch, but nor did it carry a biological cargo. It’s also been seven years in space, so by now the risk of biocontamination is vanishingly small – but the more things we send to the Moon, the more careful we must be and the harder it will be to enforce any rules.

Read more:
Swipe left-right to see before and after images of natural lunar crater

Article by David Rothery, Professor of Planetary Geosciences, The Open University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Adblock test (Why?)



Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

B.C. sets up a panel on bear deaths, will review conservation officer training

Published

 on

 

VICTORIA – The British Columbia government is partnering with a bear welfare group to reduce the number of bears being euthanized in the province.

Nicholas Scapillati, executive director of Grizzly Bear Foundation, said Monday that it comes after months-long discussions with the province on how to protect bears, with the goal to give the animals a “better and second chance at life in the wild.”

Scapillati said what’s exciting about the project is that the government is open to working with outside experts and the public.

“So, they’ll be working through Indigenous knowledge and scientific understanding, bringing in the latest techniques and training expertise from leading experts,” he said in an interview.

B.C. government data show conservation officers destroyed 603 black bears and 23 grizzly bears in 2023, while 154 black bears were killed by officers in the first six months of this year.

Scapillati said the group will publish a report with recommendations by next spring, while an independent oversight committee will be set up to review all bear encounters with conservation officers to provide advice to the government.

Environment Minister George Heyman said in a statement that they are looking for new ways to ensure conservation officers “have the trust of the communities they serve,” and the panel will make recommendations to enhance officer training and improve policies.

Lesley Fox, with the wildlife protection group The Fur-Bearers, said they’ve been calling for such a committee for decades.

“This move demonstrates the government is listening,” said Fox. “I suspect, because of the impending election, their listening skills are potentially a little sharper than they normally are.”

Fox said the partnership came from “a place of long frustration” as provincial conservation officers kill more than 500 black bears every year on average, and the public is “no longer tolerating this kind of approach.”

“I think that the conservation officer service and the B.C. government are aware they need to change, and certainly the public has been asking for it,” said Fox.

Fox said there’s a lot of optimism about the new partnership, but, as with any government, there will likely be a lot of red tape to get through.

“I think speed is going to be important, whether or not the committee has the ability to make change and make change relatively quickly without having to study an issue to death, ” said Fox.

This report by The Canadian Press was first published Sept. 9, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

Science

Asteroid Apophis will visit Earth in 2029, and this European satellite will be along for the ride

Published

 on

The European Space Agency is fast-tracking a new mission called Ramses, which will fly to near-Earth asteroid 99942 Apophis and join the space rock in 2029 when it comes very close to our planet — closer even than the region where geosynchronous satellites sit.

Ramses is short for Rapid Apophis Mission for Space Safety and, as its name suggests, is the next phase in humanity’s efforts to learn more about near-Earth asteroids (NEOs) and how we might deflect them should one ever be discovered on a collision course with planet Earth.

In order to launch in time to rendezvous with Apophis in February 2029, scientists at the European Space Agency have been given permission to start planning Ramses even before the multinational space agency officially adopts the mission. The sanctioning and appropriation of funding for the Ramses mission will hopefully take place at ESA’s Ministerial Council meeting (involving representatives from each of ESA’s member states) in November of 2025. To arrive at Apophis in February 2029, launch would have to take place in April 2028, the agency says.

This is a big deal because large asteroids don’t come this close to Earth very often. It is thus scientifically precious that, on April 13, 2029, Apophis will pass within 19,794 miles (31,860 kilometers) of Earth. For comparison, geosynchronous orbit is 22,236 miles (35,786 km) above Earth’s surface. Such close fly-bys by asteroids hundreds of meters across (Apophis is about 1,230 feet, or 375 meters, across) only occur on average once every 5,000 to 10,000 years. Miss this one, and we’ve got a long time to wait for the next.

When Apophis was discovered in 2004, it was for a short time the most dangerous asteroid known, being classified as having the potential to impact with Earth possibly in 2029, 2036, or 2068. Should an asteroid of its size strike Earth, it could gouge out a crater several kilometers across and devastate a country with shock waves, flash heating and earth tremors. If it crashed down in the ocean, it could send a towering tsunami to devastate coastlines in multiple countries.

Over time, as our knowledge of Apophis’ orbit became more refined, however, the risk of impact  greatly went down. Radar observations of the asteroid in March of 2021 reduced the uncertainty in Apophis’ orbit from hundreds of kilometers to just a few kilometers, finally removing any lingering worries about an impact — at least for the next 100 years. (Beyond 100 years, asteroid orbits can become too unpredictable to plot with any accuracy, but there’s currently no suggestion that an impact will occur after 100 years.) So, Earth is expected to be perfectly safe in 2029 when Apophis comes through. Still, scientists want to see how Apophis responds by coming so close to Earth and entering our planet’s gravitational field.

“There is still so much we have yet to learn about asteroids but, until now, we have had to travel deep into the solar system to study them and perform experiments ourselves to interact with their surface,” said Patrick Michel, who is the Director of Research at CNRS at Observatoire de la Côte d’Azur in Nice, France, in a statement. “Nature is bringing one to us and conducting the experiment itself. All we need to do is watch as Apophis is stretched and squeezed by strong tidal forces that may trigger landslides and other disturbances and reveal new material from beneath the surface.”

The Goldstone radar’s imagery of asteroid 99942 Apophis as it made its closest approach to Earth, in March 2021. (Image credit: NASA/JPL–Caltech/NSF/AUI/GBO)

By arriving at Apophis before the asteroid’s close encounter with Earth, and sticking with it throughout the flyby and beyond, Ramses will be in prime position to conduct before-and-after surveys to see how Apophis reacts to Earth. By looking for disturbances Earth’s gravitational tidal forces trigger on the asteroid’s surface, Ramses will be able to learn about Apophis’ internal structure, density, porosity and composition, all of which are characteristics that we would need to first understand before considering how best to deflect a similar asteroid were one ever found to be on a collision course with our world.

Besides assisting in protecting Earth, learning about Apophis will give scientists further insights into how similar asteroids formed in the early solar system, and, in the process, how  planets (including Earth) formed out of the same material.

One way we already know Earth will affect Apophis is by changing its orbit. Currently, Apophis is categorized as an Aten-type asteroid, which is what we call the class of near-Earth objects that have a shorter orbit around the sun than Earth does. Apophis currently gets as far as 0.92 astronomical units (137.6 million km, or 85.5 million miles) from the sun. However, our planet will give Apophis a gravitational nudge that will enlarge its orbit to 1.1 astronomical units (164.6 million km, or 102 million miles), such that its orbital period becomes longer than Earth’s.

It will then be classed as an Apollo-type asteroid.

Ramses won’t be alone in tracking Apophis. NASA has repurposed their OSIRIS-REx mission, which returned a sample from another near-Earth asteroid, 101955 Bennu, in 2023. However, the spacecraft, renamed OSIRIS-APEX (Apophis Explorer), won’t arrive at the asteroid until April 23, 2029, ten days after the close encounter with Earth. OSIRIS-APEX will initially perform a flyby of Apophis at a distance of about 2,500 miles (4,000 km) from the object, then return in June that year to settle into orbit around Apophis for an 18-month mission.

Related Stories:

Furthermore, the European Space Agency still plans on launching its Hera spacecraft in October 2024 to follow-up on the DART mission to the double asteroid Didymos and Dimorphos. DART impacted the latter in a test of kinetic impactor capabilities for potentially changing a hazardous asteroid’s orbit around our planet. Hera will survey the binary asteroid system and observe the crater made by DART’s sacrifice to gain a better understanding of Dimorphos’ structure and composition post-impact, so that we can place the results in context.

The more near-Earth asteroids like Dimorphos and Apophis that we study, the greater that context becomes. Perhaps, one day, the understanding that we have gained from these missions will indeed save our planet.

 

Source link

Continue Reading

Trending

Exit mobile version