Starlink Group 4-13 | Falcon 9 Block 5 - Everyday Astronaut | Canada News Media
Connect with us

Science

Starlink Group 4-13 | Falcon 9 Block 5 – Everyday Astronaut

Published

 on


Lift Off Time
May 13, 2022 – 22:07 UTC | 15:07 PDT
Mission Name
Starlink Group 4-13; the fifteenth launch to Starlink Shell 4
Launch Provider
(What rocket company launched it?)
SpaceX
Customer
(Who paid for this?)
SpaceX
Rocket
Falcon 9 Block 5, B1063-5; 108.20 day turnaround
Launch Location
Space Launch Complex 4 East (SLC-4E), Vandenberg Space Force Base, California, USA
Payload mass
~16,250 kg (~35,800 lb) (53 x 307 kg, plus dispenser)
Where did the satellites go?
Starlink Shell 4; 540 km circular low-Earth orbit (LEO); initial orbit: 315 x 305 km at 53.22°
Did they attempt to recover the first stage?
Yes
Where did the first stage land?
B1063 successfully landed 642 km downrange on Of Course I Still Love You

Tug: Debra C; Support: GO Quest

Did they attempt to recover the fairings?
The fairing halves were recovered from the water ~654 km downrange by NRC Quest
Were these fairings new?
No, both fairing halves were flight proven
This was the:
– 153rd Falcon 9 launch
– 93rd Falcon 9 flight with a flight proven booster
– 97th re-flight of a booster
– 18th re-flight of a booster in 2022
– 119th booster landing

– 45th consecutive landing (a record)
– 19th launch for SpaceX in 2022
– 23rd SpaceX launch from SLC-4E
– 53rd orbital launch attempt of 202
2
Where to watch
Official Replay

How Did It Go?

SpaceX’s Starlink Group 4-13 mission successfully launched 53 Starlink satellites atop a Falcon 9 rocket. The Falcon 9 lifted off from Space Launch Complex 4 East (SLC-4E), at the Vandenberg Space Force Base, in California, United States. Starlink Group 4-13 marked the 44th operational Starlink mission, boosting the total number of Starlink satellites launched to 2,547, of which 2,300 are in orbit around the Earth. Starlink Group 4-13 marked the 15th launch to the fourth Starlink shell; roughly 30 launches will be required to fill this shell.

Starlink is SpaceX’s internet communication satellite constellation. The low-Earth orbit constellation will deliver fast, low-latency internet service to locations where ground-based internet is unreliable, unavailable, or expensive. The first phase of the constellation consists of five orbital shells.

Starlink is currently available in certain regions, allowing anyone in approved regions to order or preorder. After 28 launches SpaceX achieved near-global coverage, but the constellation will not be complete until ~42,000 satellites are in orbit. Once Starlink is complete, the venture is expected to profit $30-50 billion annually. This profit will largely finance SpaceX’s ambitious Starship program, as well as Mars Base Alpha.

<img data-attachment-id="10398" data-permalink="https://everydayastronaut.com/starlinksatsloaded/" data-orig-file="https://everydayastronaut.com/wp-content/uploads/2019/11/starlinksatsloaded.jpg" data-orig-size="1282,1920" data-comments-opened="1" data-image-meta=""aperture":"0","credit":"","camera":"","caption":"","created_timestamp":"0","copyright":"","focal_length":"0","iso":"0","shutter_speed":"0","title":"","orientation":"0"" data-image-title="starlinksatsloaded" data-image-description data-image-caption="

A stack of 60 Starlink sattelites prior to be encapsulated into Falcon 9’s payload fairing. (Credit: SpaceX)

” data-medium-file=”https://everydayastronaut.com/wp-content/uploads/2019/11/starlinksatsloaded-200×300.jpg” data-large-file=”https://everydayastronaut.com/wp-content/uploads/2019/11/starlinksatsloaded-684×1024.jpg” width=”684″ height=”1024″ src=”https://everydayastronaut.com/wp-content/uploads/2019/11/starlinksatsloaded-684×1024.jpg” alt=”Starlink satellites, satellite dispenser.” class=”wp-image-10398″ srcset=”https://everydayastronaut.com/wp-content/uploads/2019/11/starlinksatsloaded-684×1024.jpg 684w, https://everydayastronaut.com/wp-content/uploads/2019/11/starlinksatsloaded-200×300.jpg 200w, https://everydayastronaut.com/wp-content/uploads/2019/11/starlinksatsloaded-768×1150.jpg 768w, https://everydayastronaut.com/wp-content/uploads/2019/11/starlinksatsloaded-1026×1536.jpg 1026w, https://everydayastronaut.com/wp-content/uploads/2019/11/starlinksatsloaded-1200×1797.jpg 1200w, https://everydayastronaut.com/wp-content/uploads/2019/11/starlinksatsloaded-380×569.jpg 380w, https://everydayastronaut.com/wp-content/uploads/2019/11/starlinksatsloaded-800×1198.jpg 800w, https://everydayastronaut.com/wp-content/uploads/2019/11/starlinksatsloaded-1160×1737.jpg 1160w, https://everydayastronaut.com/wp-content/uploads/2019/11/starlinksatsloaded.jpg 1282w” sizes=”(max-width: 684px) 100vw, 684px”>

A stack of 60 Starlink V1.0 satellites prior to be encapsulated into Falcon 9’s payload fairing. (Credit: SpaceX)

Each Starlink V1.5 satellite has a compact design and a mass of 307 kg. SpaceX developed a flat-panel design, allowing them to fit as many satellites as possible into the Falcon 9’s 5.2 meter wide payload fairing. Due to this flat design, SpaceX is able to fit up to 60 Starlink satellites and the payload dispenser into the second stage, while still being able to recover the first stage. This is near the recoverable payload capacity of the Falcon 9 to LEO, around 16 tonnes. 

As small as each Starlink satellite is, each one is packed with high-tech communication and cost-saving technology. Each Starlink satellite is equipped with four phased array antennas, for high bandwidth and low-latency communication, and two parabolic antennas. The satellites also include a star tracker, which provides the satellite with attitude data, ensuring precision in broadband communication. 

Each Starlink V1.5 satellite is also equipped with an inter-satellite laser communication system. This allows each satellite to communicate directly with other satellites, not having to go through ground stations. This reduces the number of ground stations needed, allowing coverage of the entire Earth’s surface, including the poles.

The Starlink satellites are also equipped with an autonomous collision avoidance system, which utilizes the US Department of Defense (DOD) debris tracking database to autonomously avoid collisions with other spacecraft and space junk. 

To decrease costs, each satellite has a single solar panel, which simplifies the manufacturing process. To further cut costs, Starlink’s propulsion system, an ion thruster, uses krypton as fuel, instead of xenon. While the specific impulse (ISP) of krypton is significantly lower than xenon’s, it is far cheaper, which further decreases the satellite’s manufacturing cost.

Ion Power

Each Starlink satellite is equipped with the first Hall-effect krypton-powered ion thruster. This thruster is used for both ensuring the correct orbital position, as well as for orbit raising and orbit lowering. At the end of the satellite’s life, this thruster is used to deorbit the satellite.

A satellite constellation is a group of satellites that work in conjunction for a common purpose. Currently, SpaceX plans to form a network of 11,716 satellites; however, in 2019 SpaceX filed an application with the Federal Communication Commission (FCC) for permission to launch and operate an additional 30,000 satellites as part of phase 2 of Starlink. To put this number of satellites into perspective, this is roughly 20 times more satellites than were launched before 2019. 

Of the initial ~12,000 satellites, ~4,400 would operate on the Ku and Ka bands, with the other ~7,600 operating on the V-Band. 

Due to the vast number of Starlink satellites, many astronomers are concerned about their effect on the night sky. However, SpaceX is working with the astronomy community and implementing changes to the satellites to make them harder to see from the ground and less obtrusive to the night sky. SpaceX has changed how the satellites raise their orbits and, starting on Starlink V1.0 L9, added a sunshade to reduce light reflectivity. These changes have already significantly decreased the effect of Starlink on the night sky.

Inclination (°) Orbital Altitude (km) Number of Satellites
Shell 1 53.0 550 1,584
Shell 2 70.0 570 720
Shell 3 97.6 560 348
Shell 4 53.2 540 1,584
Shell 5 97.6 560 172
Orbital Shells

Shell 1

The first orbital shell of Starlink satellites consists of 1,584 satellites in a 53.0° 550 km low-Earth orbit. Shell 1 consists of 72 orbital planes, with 22 satellites in each plane. This shell is currently near complete, with occasional satellites being replaced. The first shell provides coverage between roughly 52° and -52° latitude (~80% of the Earth’s surface), and will not feature laser links until replacement satellites launch after 2021.

Shell 2

Starlink’s second shell will host 720 satellites in a 70° 570 km orbit. These satellites will significantly increase the coverage area, which will make the Starlink constellation cover around 94% of the globe. SpaceX will put 20 satellites in each of the 36 planes in the third shell. This shell is currently being filled, along with Shell 4.

Shell 3

Shell 3 will consist of 348 satellites in a 97.6° 560 km orbit. SpaceX deployed 10 laser link test satellites into this orbit on their Transporter-1 mission to test satellites in a polar orbit. SpaceX launched an additional three satellites to this shell on the Transporter-2 mission. On April 6, 2021, Gwynne Shotwell said that SpaceX will conduct regular polar Starlink launches in the summer, but this shell is now the lowest priority, and is expected to be the last filled. All satellites that will be deployed into this orbit will have inter-satellite laser link communication. Shell 4 will have six orbital planes with 58 satellites in each plane.

Shell 4

The fourth shell will consist of 1,584 satellites in a 540 km 53.2° LEO. This updated orbital configuration will slightly increase coverage area and will drastically increase the bandwidth of the constellation. This shell will also consist of 72 orbital planes with 22 satellites in each plane. This shell is currently being filled alongside Shell 2.

Shell 5

The final shell of Phase 1 of Starlink will host 172 satellites in another 97.6° 560 km low-Earth polar orbit. Shell 5 will also consist purely of satellites with laser communication links; however, unlike Shell 3, it will consist of four orbital planes with 43 satellites in each plane.

Shell 6

The sixth orbital shell of Starlink satellites is permitted to consist of 2,493 satellites in a 42° 335.9 km LEO. This large number of satellites will decrease latency and increase bandwidth for lower latitudes.

Shell 7

The seventh Starlink shell permits SpaceX to deploy 2,478 satellites into a 48° 340.8 km low-Earth orbit. These satellites will further decrease latency and increase bandwidth for lower latitudes.

Shell 8

The final shell of Starlink Phase 2 allows SpaceX to deploy 2,547 satellites in a 53° 345.6 km orbit.

SpaceX has until March of 2024 to complete half of phase 1 and must fully complete Phase 1 by March of 2027. Phase 2 must be half complete by November of 2024, and be finished by November of 2027. Failure to do so could result in SpaceX losing its dedicated frequency band.

What Is Falcon 9 Block 5?

The Falcon 9 Block 5 is SpaceX’s partially reusable two-stage medium-lift launch vehicle. The vehicle consists of a reusable first stage, an expendable second stage, and, when in payload configuration, a pair of reusable fairing halves.

First Stage

The Falcon 9 first stage contains 9 Merlin 1D+ sea level engines. Each engine uses an open gas generator cycle and runs on RP-1 and liquid oxygen (LOx). Each engine produces 845 kN of thrust at sea level, with a specific impulse (ISP) of 285 seconds, and 934 kN in a vacuum with an ISP of 313 seconds. Due to the powerful nature of the engine, and the large amount of them, the Falcon 9 first stage is able to lose an engine right off the pad, or up to two later in flight, and be able to successfully place the payload into orbit.

The Merlin engines are ignited by triethylaluminum and triethylborane (TEA-TEB), which instantaneously burst into flames when mixed in the presence of oxygen. During static fire and launch the TEA-TEB is provided by the ground service equipment. However, as the Falcon 9 first stage is able to propulsively land, three of the Merlin engines (E1, E5, and E9) contain TEA-TEB canisters to relight for the boost back, reentry, and landing burns.

Second Stage

The Falcon 9 second stage is the only expendable part of the Falcon 9. It contains a singular MVacD engine that produces 992 kN of thrust and an ISP of 348 seconds. The second stage is capable of doing several burns, allowing the Falcon 9 to put payloads in several different orbits.

For missions with many burns and/or long coasts between burns, the second stage is able to be equipped with a mission extension package. When the second stage has this package it has a grey strip, which helps keep the RP-1 warm, an increased number of composite-overwrapped pressure vessels (COPVs) for pressurization control, and additional TEA-TEB.

Falcon 9 Block 5 launching on the Starlink V1.0 L27 mission (Credit: SpaceX)

Falcon 9 Booster

The booster that supported Starlink Group 4-13 is B1063. As the booster had supported 4 previous flights, its designation for Starlink Group 4-13 is B1063-5. This changed to B1063-6 upon successful landing.

B1063’s missions Launch Date (UTC) Turnaround Time (Days)
Sentinel-6 November 21, 2020 17:17 N/A
Starlink V1.0 L28 May 26, 2021 18:59 186.07
DART November 24, 2021 06:21 181.47
Starlink Group 4-11 February 25, 2022 17:12 62.45
Starlink Group 4-13 May 13, 2022 22:07 108.20

Following stage separation, the Falcon 9 conducted two burns. These burns softly touched down the booster on SpaceX’s autonomous spaceport drone ship Of Course I Still Love You.

Falcon 9 landing on Of Course I Still Love You after launching Bob and Doug (Credit: SpaceX)

Falcon 9 Fairings

The Falcon 9’s fairing consists of two dissimilar reusable halves. The first half (the half that faces away from the transport erector) is called the active half, and houses the pneumatics for the separation system. The other fairing half is called the passive half. As the name implies, this half plays a purely passive role in the fairing separation process, as it relies on the pneumatics from the active half.

Both fairing halves are equipped with cold gas thrusters and a parafoil which are used to softly touch down the fairing half in the ocean. SpaceX used to attempt to catch the fairing halves, however, at the end of 2020 this program was canceled due to safety risks and a low success rate. On Starlink Group 4-13, SpaceX recovered the fairing halves from the water with their recovery vessel NRC Quest.

In 2021, SpaceX started flying a new version of the Falcon 9 fairing. The new “upgraded” version has vents only at the top of each fairing half, by the gap between the halves, whereas the old version had vents placed spread equidistantly around the base of the fairing. Moving the vents decreases the chance of water getting into the fairing, making the chance of a successful scoop significantly higher.

All times are approximate

HR/MIN/SEC EVENT
00:38:00 SpaceX Launch Director verifies go for propellant load
00:35:00 RP-1 (rocket grade kerosene) loading underway
00:35:00 1st stage LOX (liquid oxygen) loading underway
00:16:00 2nd stage LOX loading underway
00:07:00 Falcon 9 begins engine chill prior to launch
00:01:00 Command flight computer to begin final prelaunch checks
00:01:00 Propellant tank pressurization to flight pressure begins
00:00:45 SpaceX Launch Director verifies go for launch
00:00:03 Engine controller commands engine ignition sequence to start
00:00:00 Falcon 9 liftoff

All times are approximate

HR/MIN/SEC EVENT
00:01:12 Max Q (moment of peak mechanical stress on the rocket)
00:02:30 1st stage main engine cutoff (MECO)
00:02:34 1st and 2nd stages separate
00:02:40 2nd stage engine starts (SES-1)
00:02:45 Fairing deployment
00:06:25 1st stage entry burn start
00:06:44 1st stage entry burn complete
00:08:10 1st stage landing burn start
00:08:33 1st stage landing
00:08:46 2nd stage engine cutoff (SECO-1)
00:53:40 2nd stage engine starts (SES-2)
00:53:41 2nd stage engine cutoff (SECO-2)
01:02:42 Starlink satellites deploy

Adblock test (Why?)



Source link

Continue Reading

News

Here’s how Helene and other storms dumped a whopping 40 trillion gallons of rain on the South

Published

 on

 

More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.

That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.

“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”

The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.

Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.

Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.

Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.

Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.

Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.

“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”

The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.

North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.

Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”

Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.

Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.

For Dello, the “fingerprints of climate change” were clear.

“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”

___

Follow AP’s climate coverage at https://apnews.com/hub/climate

___

Follow Seth Borenstein on Twitter at @borenbears

___

Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.

Source link

Continue Reading

Science

‘Big Sam’: Paleontologists unearth giant skull of Pachyrhinosaurus in Alberta

Published

 on

 

It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.

On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.

They call it “Big Sam.”

The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.

It didn’t die alone.

“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.

She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”

“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.

The head alone, she said, is about the size of a baby elephant.

The discovery was a long time coming.

The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.

“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.

When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”

“It contains about 100 to 300 bones per square metre,” she said.

Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.

About a year ago, they found the second adult: Big Sam.

Bamforth said both dinosaurs are believed to have been the elders in the herd.

“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.

“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”

The genders of the two adults are unknown.

Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.

The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.

She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.

“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.

“It’s pretty exciting.”

This report by The Canadian Press was first published Sept. 25, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending

Exit mobile version