The daring plan to save the Arctic ice with glass | Canada News Media
Connect with us

Science

The daring plan to save the Arctic ice with glass

Published

 on

The fear that action to combat climate change has been too slow has led some scientists to test unconventional methods to stem the loss of Arctic sea ice.

One of the most important, yet underappreciated, features of the Arctic sea ice is the ability of its blindingly white surfaces to reflect sunlight. For at least as long as our species has existed, the frozen seas at the top of our world have acted as a massive parasol that helps keep the planet cool and its climate stable.

Yet now, much of that ice is rapidly vanishing. Rising temperatures have locked the Arctic in a self-destructive feedback loop: the warmer it gets, the reflective white ice dissolves into darker, blue water, which absorbs more of the Sun’s warmth rather than reflecting it back into space. Warmer water accelerates melting, which means yet more absorption of heat, which drives further melting – and so on in a vicious cycle that is part of the reason why the Arctic is warming around twice as fast as the rest of the planet. This July, ice cover was as low as it had ever been at that time of the year.

As planet-warming greenhouse gas emissions continue to rise, some have been driven to explore desperate measures. One proposal put forward by the California-based non-profit Arctic Ice Project appears as daring as it is bizarre: to scatter a thin layer of reflective glass powder over parts of the Arctic, in an effort to protect it from the Sun’s rays and help ice grow back. “We’re trying to break [that] feedback loop and start rebuilding,” says engineer Leslie Field, an adjunct lecturer at Stanford University and chief technical officer of the organisation.

The melting of the sea ice has impacts far beyond the Arctic and its inhabitants. It will contribute to rising sea levels, and some say it’s already disrupting weather patterns around the globe. If we lose our protective white shield entirely – which some reckon could happen just decades from now – it could have the same warming effect as another 25 years of fossil fuel emissions at current rates, which would mean more intense droughts, flooding and heat waves. By rebuilding sea ice, Field hopes her approach will also restore its ancient function as a planetary air-conditioner and help counteract the effects of global warming. (Read more about how ice loss in the Arctic affects the rest of the world.)

Tiny powder-like beads could increase the reflectivity of Arctic ice, to reflect more of the Sun’s warmth back into space (Credit: Susan Kramer/Arctic Ice Project)

Many scientists frown upon such technological interventions in Earth’s planetary system, known broadly as “geoengineering”, arguing that fiddling with nature might cause further damage. However, “the utter lack of progress on climate mitigation is really opening up a space for all of these [geoengineering] things to be discussed,” says Emily Cox, who studies climate policy and public attitudes towards geoengineering at the University of Cardiff. That said, the urgency does not erase the uncertainty. “What do you do if something goes wrong… especially in the Arctic, which is already a fairly fragile ecosystem?”

Field launched the Arctic Ice Project — formerly known as ICE911 — in 2008, soon after watching the climate change documentary An Inconvenient Truth, which convinced her of the urgency of doing something about the melting sea ice. In particular, it’s the fate of old, thick sea ice that worries her the most – the kind that lasts multiple years. This mature ice, dazzlingly white, has a high albedo, meaning it’s extremely good at reflecting sunlight – much more so than the thinner and darker young ice that forms each polar winter only to melt again during the summer. Yet over the past 33 years, that ice has dwindled by a staggering 95%.

What if, Field asked, she could layer a reflective material on top of the young ice to protect it during the summer months? If it had that extra protection, could it rebuild into sturdy multi-year ice, and kick-start a local process of ice regrowth? She settled on silica – or silicon dioxide – which occurs naturally in most sand and is often used to make glass, as the material of choice. She found a manufacturer that turns it into tiny, brightly reflective beads, each one 65 micrometers in diameter – thinner than a human hair, but too large for them to be inhaled and cause lung problems, Field says. The beads are also hollow inside, so they’ll float on water and continue to reflect away sunlight even if the ice begins to melt.

Over the past decade, she and her team have scattered the silica spheres over several lakes and ponds in Canada and the United States, so far with encouraging results. For instance, in a pond in Minnesota, just a few layers of glass powder made young ice 20% more reflective – enough to delay the melting of the ice. By spring, when the ice in an uncovered area of the pond had completely vanished, there was still nearly a foot of ice in the section treated with the glass beads.

Dark blue water absorbs more of the Sun’s rays, accelerating the process of global warming – but bright white ice reflects that radiation away (Credit: Getty Images)

Field doesn’t want to carpet the Arctic in glass. Instead, she plans on distributing it strategically to protect some particularly fast-melting, vulnerable areas, like the Fram Strait, a thin passage between Greenland and Svalbard. According to results of a climate model she presented last December at the annual meeting of the American Geophysical Union, treating the Fram Strait could lead to large-scale ice regrowth across parts of the Arctic.

Scientists agree that the beads are well-intentioned, but worry about their potential effects on the Arctic ecosystem. If they float around there indefinitely, “it’s just going to clog up the ocean and mess with the ecosystem,” says Cecilia Bitz, an atmospheric scientist at the University of Washington who specialises in Arctic sea ice.

Field argues that the balls are safe because silica is so abundant in nature – indeed, it routinely washes from weathered rocks via rivers into the sea. And according to some safety testing as part of her 2018 study, the beads, when ingested, cause no ill effects in at least two species – sheepshead minnow fish and northern bobwhite birds.

However, some biologists are concerned about the potential effects on the creatures at the base of the Arctic food chain. Depending on how much light the silica beads reflect, they could block sunlight from photosynthesising plankton, such as diatoms, algae that live under the sea ice and around it. Any change in plankton abundance could cascade up the food web and have unpredictable effects on organisms from fish to seals and polar bears, notes Karina Giesbrecht, an ocean chemist and ecologist at Canada’s University of Victoria who has studied the role of silica in Arctic ecosystems.

On top of that, the silica balls are similar in size to diatoms, which are eaten by zooplankton known as copepods, Giesbrecht notes. If the beads sank into the water column, copepods might consume them thinking they are diatoms, without gaining any nutrition. In the worst case, the copepods could starve, with knock-on effects for other members of the Arctic ecosystem.

So far, Field has been using beads that mostly stay afloat (though some inevitably sink each season), and she is planning to test their impact on plankton ecosystems. If there are any harmful effects, she’ll explore ways of tailoring the beads to make them ecologically safer, she says. One option she is considering is whether to tweak their composition such that they dissolve after a period of time. There are many other questions that her team, which is about to undertake further testing in seawater-filled pools in Alaska, will have to answer to convince the world that the approach is safe and effective.

The young, thin Arctic ice is darker and less reflective than the thick, white, old ice – pushing the Arctic into a feedback cycle of warming (Credit: Martha Henriques)

For one, Mark Serreze, a climate scientist who directs the US National Snow and Ice Data Center at the University of Colorado, Boulder, wonders whether they’ll work as intended. “If you put down the silica beads in an area of fast-moving ocean currents, notably the Fram Strait, they will be quickly dispersed,” rendering them ineffective, he says.

The proposal also raises financial questions, like who would foot the approximately $1-5bn (£800m to £4bn) annual bill for making, shipping, testing and distributing the necessary silica beads in the Fram Strait. It may be an eye-watering figure, but it starts to look small next to the estimated $460bn (£360bn) that the United States incurred in extreme weather and climate disasters between 2017 and 2019 alone, Field notes.

Researchers are exploring the feasibility of other geoengineering approaches to save the melting Arctic, but none come without problems. One, for instance, would entail building millions of wind-powered devices to pump water from the deep to the ice surface in order to build up thicker layers of ice – which is energy-intensive and might not be very effective, Bitz says. She and Serreze view such approaches as stop-gap solutions to climate change, in that they only treat single symptoms – in the case of silica dust, temperatures – while doing nothing about the root cause of it. If Field’s strategy works as intended, “that’s wonderful,” Bitz says, “but I know that not emitting CO2 in the first place will work.”

Field agrees that geoengineering is in no way a replacement for reducing carbon emissions. Rather, she sees it as a chance to buy the time needed for world economies to decarbonise and stave off the worst impacts of climate change. The silica beads, she says, are “the backup plan I hoped we’d never need”.

Source:- BBC News

Source link

Continue Reading

News

Here’s how Helene and other storms dumped a whopping 40 trillion gallons of rain on the South

Published

 on

 

More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.

That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.

“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”

The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.

Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.

Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.

Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.

Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.

Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.

“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”

The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.

North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.

Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”

Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.

Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.

For Dello, the “fingerprints of climate change” were clear.

“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”

___

Follow AP’s climate coverage at https://apnews.com/hub/climate

___

Follow Seth Borenstein on Twitter at @borenbears

___

Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.

Source link

Continue Reading

Science

‘Big Sam’: Paleontologists unearth giant skull of Pachyrhinosaurus in Alberta

Published

 on

 

It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.

On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.

They call it “Big Sam.”

The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.

It didn’t die alone.

“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.

She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”

“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.

The head alone, she said, is about the size of a baby elephant.

The discovery was a long time coming.

The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.

“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.

When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”

“It contains about 100 to 300 bones per square metre,” she said.

Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.

About a year ago, they found the second adult: Big Sam.

Bamforth said both dinosaurs are believed to have been the elders in the herd.

“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.

“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”

The genders of the two adults are unknown.

Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.

The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.

She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.

“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.

“It’s pretty exciting.”

This report by The Canadian Press was first published Sept. 25, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending

Exit mobile version