Spruce, pine, fir and other trees tower across the frigid swaths of land that span North America, northern Europe and Russia in a great ring around the world. These boreal forests constitute the largest land ecosystem and the northernmost forests on Earth.
Nestled within the photosynthetic, or light-eating, tissue of the boreal trees—and within the bountiful cloud-like lichens and feathery mosses that carpet the ground between them—are fungi. These fungi are endophytes, meaning they live within plants, often in a mutually beneficial arrangement.
“To be a plant is to live in a fungal world,” said Betsy Arnold, a professor in the School of Plant Sciences in the College of Agriculture, Life and Environmental Sciences and the Department of Ecology and Evolutionary Biology in the College of Science and a member of the Bio5 Institute. “Endophytic fungi are vital to the health of plants in ways that aren’t yet totally understood, but what we do know from endophytes in general is that they’re very good at protecting plants against disease and helping plants be more resilient to environmental stressors, like heat. They’ve been part of an important revolution in our thinking about plants.”
Over a decade ago, Arnold and her team set out on a monthlong adventure deep into the wilderness of northeastern Canada to understand how these fungal species adapted across different microenvironments and how they might fare under future climate change.
They found great diversity among the fungi and that they were adapted in highly specific ways to their local conditions, implying that they will be sensitive to future changes in climate. With the health of fungi so closely tied to the health of their hosts, these findings have implications for the overall health of future boreal forests and for our planet.
“Boreal forests are central to our planet’s carbon and water cycles,” Arnold said. “And our work highlights that they are home to some of the most evolutionarily diverse fungal endophytes in the world—endophytes that are found nowhere else.”
After over a decade of analysis, their findings were published in the journal Current Biology.
“Our collaborative study shed light on the diversity in the boreal biome of newly discovered endophytic fungi and their sensitivity to climate,” said study co-lead author Shuzo Oita, who completed his doctoral studies in Arnold’s lab and is now a research scientist at Sumitomo Chemical Co., Ltd. “Endophytes are often overlooked because they occur in healthy plant tissues, but their importance in biodiversity and ecosystems has been revealed recently.”
Flying for fungi
Collecting the data to come to this conclusion was a gargantuan effort that required Arnold and her colleagues to undertake some of the most intense fieldwork of her life, she said.
For a month during the summer of 2011, the team contracted with an expert pilot “to access places where the roads don’t go,” Arnold said. The team of six traversed the southern boreal forests of Canada all the way up to the edge of the Arctic tundra, landing their float plane in lakes along the way.
Thirty-six times they took off and landed among remote lakes dotting the landscape. Typically, they spent about six to 24 hours at each sample site.
By day, they collected healthy spruce tree leaves and fresh mosses and lichens from the ground, stowing their scientific treasure in zip-close bags as they went. They also drilled tree ring cores, hoping to reveal their pasts, such as their age and wildfire exposure. They also measured various forest characteristics to understand how plants vary across the landscape.
By night, as the northern lights fluttered overhead, they processed their samples in portable laboratories inside the pilots’ quarters. They surface-sterilized fresh tissues to prepare them for DNA extraction and isolated fungal cultures to visualize and document strains living within their samples.
“We often worked until 2 or 3 in the morning and would sleep for a few hours before flying on to the next site,” Arnold said. The long days paid off: “In the fungal world, an hour of fieldwork is a year of characterization and a decade of potential analysis. And in just a few weeks’ time, we covered a lot of ground.”
As they traveled from the warmer southern regions to the colder north, they repeated their sampling at approximately 100-mile intervals. They also sampled along a single band of latitude that was equally vast but represented very little change in climate, Arnold said.
They strategically sampled in these two dimensions to ensure that any differences in fungal biodiversity were truly driven by environmental differences rather than distance alone. Together, they flew nearly 1,500 miles in the DeHavilland Otter that was their mobile home, often sharing their traveling space with extra tanks of fuel.
Older studies have examined the correlation between biodiversity and latitude, which is often used as a proxy for climate. These studies found that in general, life becomes more diverse closer to the equator, Arnold said. For example, for many groups of organisms, those in tropical rainforests are more biodiverse than those in the Arctic tundra.
It turns out, it’s not that simple when it comes to fungi in the boreal zone.
“We show that boreal fungal communities don’t necessarily change with climate in the same predictable way as plant communities. Instead, the effect of climate on these fungi is highly dependent on both the fungal species and the host,” said co-lead author Jana U’Ren, who completed her doctoral work and conducted the laboratory analysis for this project as a postdoctoral scientist with Arnold before moving to Washington State University. “This means that we need to protect plants and their fungal endophytes across the boreal biome, and not just in one location, or we risk losing vital biodiversity and protective fungi in these important forests.”
Arnold thinks that the special climate dependence of these fungal endophytes reflects a process of co-evolution with their hosts—or “research and development,” as she put it—as plants find the ideal endophyte partner and flourish despite the distinctive stresses that plants face in these harsh northern landscapes.
“Endophytes are found all around the world, but there are distinctive ones in different environments. We think that symbioses with endophytes are, in part, how plants overcome environmental challenges at a global scale—that is, with their internal fungal partners,” Arnold said.
“There’s not a lot of information about exactly what an individual endophyte does for an individual plant. So, our study is foundational in the sense that we tried to figure out who these endophytes are, and how they’re distributed, and how they might change with a shifting climate.”
She hopes that future research can build off their findings.
“What we do know is that we’re losing that biodiversity when those forests are changing, and we don’t yet know what the key functional elements are,” she said.
Collaborator François Lutzoni, a professor of biology at Duke University and co-architect of this study with Arnold, agreed.
“This was some of the most complex fieldwork I have ever done, but also one of the most exhilarating research experiences I have had,” Lutzoni said.
“To document biodiversity in our changing world is essential research. The specimens we collected are deposited in herbaria and therefore have lasting value to understand how species, their distributions, their genes and the ecosystems they inhabit change over time. In turn, the best way for herbaria to serve the scientific community is by being integrated with research labs in world-class universities.”
Within this mindset, Arnold is now working to use home-grown Arizona endophytes to enhance crop resilience in this changing world.
“Just like boreal forests harbor an unexpected diversity of endophytes, so too do plants here in Arizona,” Arnold said. “Our next steps are to tap these rich and ancient endophytes as tools for helping plants thrive. Ultimately, we hope that by understanding these fungi at a global scale, we can not only chart the past and future of a key element of our planet’s biodiversity, but we also can harness those in our local areas to make crops thrive with limited water and rising temperatures. You might say that the future is fungal.”
Other co-authors are Jolanta Miadlikowska from Duke University, Bernard Ball from University College Dublin and Duke University, Ignazio Carbone from North Carolina State University, Georgiana May from the University of Minnesota, Naupaka B. Zimmerman from the University of San Francisco, Denis Valle from the University of Florida and Valerie Trouet from the University of Arizona Laboratory of Tree Ring Research.
More information:
Jana M. U’Ren et al, Environmental drivers and cryptic biodiversity hotspots define endophytes in Earth’s largest terrestrial biome, Current Biology (2024). DOI: 10.1016/j.cub.2024.01.063
Citation:
‘The future is fungal’: New research finds that fungi that live in healthy plants are sensitive to climate change (2024, February 20)
retrieved 20 February 2024
from https://phys.org/news/2024-02-future-fungal-fungi-healthy-sensitive.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.
More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.
That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.
“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”
The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.
Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.
Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.
Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.
Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.
Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.
“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”
The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.
North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.
Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”
Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.
Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.
For Dello, the “fingerprints of climate change” were clear.
“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”
Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.
It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.
On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.
They call it “Big Sam.”
The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.
It didn’t die alone.
“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.
She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”
“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.
The head alone, she said, is about the size of a baby elephant.
The discovery was a long time coming.
The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.
“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.
When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”
“It contains about 100 to 300 bones per square metre,” she said.
Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.
About a year ago, they found the second adult: Big Sam.
Bamforth said both dinosaurs are believed to have been the elders in the herd.
“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.
“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”
The genders of the two adults are unknown.
Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.
The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.
She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.
“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.
“It’s pretty exciting.”
This report by The Canadian Press was first published Sept. 25, 2024.
TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.
Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.
Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.
The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.
The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.
It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.
Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.
Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.
Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.
Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.
Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.
The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”