Connect with us

Science

The James Webb Space Telescope's Next Targets Are Potentially Mind-Blowing – CNET

Published

 on


With the release of the James Webb Space Telescope’s first images on July 12 (and a sneaky reveal by US President Joe Biden on July 11), NASA, ESA and the Canadian Space Agency proved the $10 billion, 1-million-miles-from-Earth, two decade-long dream ‘scope actually works. And it works flawlessly. Just take a look at the upgraded visuals Webb delivered over its predecessor, Hubble. They’re visceral masterpieces that force us to think of the universe’s magnificence and reflect on our solar system’s negligible corner within. 

But what we saw in early July was only the preface of JWST’s book. It’ll be the chapters that follow which will write out its legacy. 

Even though the telescope’s first full-color results were excellent, they’re merely a taste of the instrument’s capabilities. In truth, we may not even have words to describe what’s to come, in the way the Hubble Space Telescope’s first light image couldn’t foreshadow the astounding deep fields that would one day plaster astronomy department walls or the nebulae that would inspire poetry.

Five galaxies locked in a dance make up Stephan’s Quintet. Images by the JWST released on July 12, 2022.

NASA

But we might be able to infer some scenes of JWST’s future because, despite this telescope’s public recency, scientists have been lining up for years to use it. 

Already, researchers are set to point it at phenomena that’ll blow your mind: massive black holes, shattering galaxy mergers, luminescent binary stars emanating smoke signals, and even marvels closer to home like Ganymede, an icy moon of Jupiter.

More specifically, a lucky first few scientists hold proposals divided into six categories, each meticulously selected by the James Webb Space Telescope Advisory Committee and the Space Telescope Science Institute in November 2017 — not to mention the more than 200 international projects separately awarded time on the telescope and those ready to join the waitlist.

But the initial cadre of JWST space explorers is meant to be a win-win for both scientist and ‘scope. These studies will create datasets, baselines, handy life hacks and just generally prime the powerful machine’s instruments for everything that comes next. For the big moments that’ll go down in history.

51412207042-751ae819e7-k

An artist’s conception of the James Webb Space Telescope.

NASA GSFC/CIL/Adriana Manrique Gutierrez

“To realize the James Webb Space Telescope’s full science potential, it is imperative that the science community quickly learns to use its instruments and capabilities,” says a page about the Director’s Discretionary-Early Release Science Programs, which was put together to pick out which investigators will test out JWST for its first 5 months of science operations (following the 6-month telescope commissioning period).

Perusing the list has heightened my anticipation — and I bet it’ll elevate yours, too. 

Here’s a snippet.

Turning the page for JWST

Some 3.5 billion light-years from Earth lies an enormous cluster of galaxies called Abell 2744, also known as Pandora’s Cluster. 

One might say this is the perfect starting candidate for JWST, as it’s part of the ancient, faraway universe. NASA’s next-gen telescope contains a wealth of infrared imaging equipment that can access light emanating from the distant cosmos — light neither human eyes nor standard optical telescopes can see. It’s a science exploration match made in heaven. 

Thus, a crew of investigators plans to observe what’s going on in this brilliant galaxy cluster, hidden to human vision but vital to astrophysical advancement. 

abell

Abell 2744, imaged by combining X-rays from Chandra (diffuse blue emission) with optical light data from Hubble (red, green and blue).

NASA/CXC; Optical: NASA/STScI

They plan on using two of JWST’s instruments, called the Near-Infrared Spectrograph and the Near Infrared Imager and Slitless Spectrograph, both of which can simply decode chemical composition of faraway worlds stuck in the infrared zone we can’t trespass. 

But JWST isn’t merely farsighted. It can turn on its reading glasses to scan nearby things, too. 

That’s why another team is more interested in figuring out how to navigate phenomena in our very own cosmic neighborhood. Their blueprints say they’ll characterize Jupiter’s cloud layers, winds, composition, temperature structure and even auroral activity — aka, the Jovian version of our northern lights. 

This research bit is poised to use nearly all of JWST’s groundbreaking infrared equipment: Nirspec, Niriss, as well as the Near-Infrared Camera — JWST’s alpha imager — and the Mid-Infrared Camera (MIRI), which, as you might guess, specializes in mid-infrared light detection. “Our program will thus demonstrate the capabilities of JWST’s instruments on one of the largest and brightest sources in the solar system and on very faint targets next to it,” they write in their abstract.

Some of the work on Jupiter has already been performed according to the status report for the project and observation windows continue into August. In addition, Jupiter’s moon Ganymede, which is the largest in the solar system, and the extremely active Io, are also set to be examined with MIRI. The latter is particularly interesting, as the researchers hope to resolve Io’s volcanoes and compare Webb’s views to classical views

jupiter-hi-res-atmo-1-2.png

Jupiter, center, and its moon Europa, left, are seen through the James Webb Space Telescope’s NIRCam instrument 2.12 micron filter. 

NASA, ESA, CSA and B. Holler and J. Stansberry (STScI)

Next up are the scientists focused on dust. But not just any dust. Stardust. 

We know dust is the main ingredient in the formation of stars and planets that decorate our universe, but we’re still foggy on the timeline they followed to bring us where we are today — especially because a lot of that crucial-to-our-existence dust is scattered in the early universe. And the early universe is illuminated purely by infrared light. 

Aha. Precisely what JWST can — and will — delve into. 

Breaking down the story of stardust means constructing an understanding of the building blocks of our cosmic universe — similar to how studying atoms opens up knowledge about chunks of matter. And as Carl Sagan once said, “The cosmos is within us. We are made of star-stuff. We are a way for the universe to know itself.” 

Perhaps JWST can aid the universe in its quest to introspect. 

Just wait until JWST sees this

Over the past many months in general, as a science writer I’ve witnessed the repetition of one striking sentiment. “Just wait until the James Webb Space Telescope sees this.” 

Not in those words, exactly, but definitely with that tone.

In April, for instance, the Hubble Space Telescope hit a record-breaking milestone when it delivered to us an image of the farthest star we’ve ever seen from the distant universe. A stellar beauty named Earendel, which aptly translates to “morning star” in Old English.

“Studying Earendel will be a window into an era of the universe that we are unfamiliar with, but that led to everything we do know,” Brian Welch, one of the discovery astronomers from Johns Hopkins University, said in a statement. 

stsci-01fws4xz7qt98wrwsztg9e86zx

Earendel (indicated with arrow) is positioned along a ripple in spacetime that gives it extreme magnification, allowing it to emerge into view from its host galaxy, which appears as a red smear across the sky. 

NASA

But remember how JWST is armed to study the ancient, invisible universe? Exactly. The study authors are prepared to look at Earendel with JWST’s lens, hopefully confirm whether it really is just one stellar body and quantify what kind of dawning star it is.

JWST could also solve a mysterious puzzle posed by Neptune, our solar system’s gassy blue ornament: It’s getting colder for no apparent reason. But “the exquisite sensitivity of the space telescope’s mid-infrared instrument, MIRI, will provide unprecedented new maps of the chemistry and temperatures in Neptune’s atmosphere,” Leigh Fletcher, co-author of a study on the mystery, and planetary scientist at the University of Leicester, said in a statement

There’s also the intrigue of decoding our cosmic realm’s violent majesties: supermassive black holes — and even an odd, multibillion-year-old, burgeoning black hole ancestor.

“Webb will have the power to decisively determine how common these rapidly growing black holes truly are,” Seiji Fujimoto, one of the discovery astronomers from the Niels Bohr Institute of the University of Copenhagen, said in a statement. 

Hubble and James Webb Space Telescope Images Compared: See the Difference

See all photos

And finally, I’d say the most mind-boggling aspect of JWST — to me, at least — is that it’s currently the best shot we have at finding proof of extraterrestrial life. Aliens. 

Some scientists are even prematurely guarding against false positives of organic matter that JWST’s software might pick up, so as not to alarm the general public (me) when that day comes. But if that day comes, our jaws will undoubtedly drop to the ground and our heart rate will pick up, unambiguously deeming July 12 a mild memory. 

And even if that day doesn’t arrive, it won’t be long until NASA’s new space exploration muse sends back an image as field-altering as the Hubble’s first deep field in 1995 — one we can’t yet fathom.

Adblock test (Why?)



Source link

Continue Reading

Science

HPC helps identify new, cleaner source for white light – EurekAlert

Published

 on


image: Upon irradiation by infrared light, adamantane-based molecular clusters with the general composition [(RT)4E5] (with R = organic group; T = C, Si, Ge, Sn; E = O, S, Se, Te, NH, CH2, ON•) emit highly directional white light.
view more 

Credit: Elisa Monte, Justus-Liebig-Universität Gießen

When early humans discovered how to harness fire, they were able to push back against the nightly darkness that enveloped them. With the invention and widespread adoption of electricity, it became easier to separate heat from light, work through the night, and illuminate train cars to highways. In recent years, old forms of electric light generation such as halogen lightbulbs have given way to more energy efficient alternatives, further cheapening the costs to brighten our homes, workplaces, and lives generally.

Unfortunately, however, white light generation by newer technologies such as light-emitting diodes (LEDs) is not straightforward and often relies on a category of materials called “rare-earth metals,” which are increasingly scarce. This has recently led scientists to look for ways to produce white light more sustainably. Researchers at Giessen University, the University of Marburg, and Karlsruhe Institute of Technology have recently uncovered a new class of material called a “cluster glass” that shows great potential for replacing LEDs in many applications.

“We are witnessing the birth of white-light generation technology that can replace current light sources. It brings all the requirements that our society asks for: availability of resources, sustainability, biocompatibility,” said Prof. Dr. Simone Sanna, Giessen University Professor and lead computational researcher on the project.  “My colleagues from the experimental sciences, who observed this unexpected white light generation, asked for theoretical support. Cluster glass has an incredible optical response, but we don’t understand why. Computational methods can help to understand those mechanisms. This is exactly the challenge that theoreticians want to face.”

Sanna and his collaborators have turned to the power of high-performance computing (HPC), using the Hawk supercomputer at the High-Performance Computing Center Stuttgart (HLRS) to better understand cluster glass and how it might serve as a next-generation light source. They published their findings in Advanced Materials.

Clear-eyed view on cluster glass formation

If you are not a materials scientist or chemist, the word glass might just mean the clear, solid material in your windows or on your dinner table. Glass is actually a class of materials that are considered “amorphous solids;” that is, they lack an ordered crystalline lattice, often due to a rapid cooling process. At the atomic level, their constituent particles are in a suspended, disordered state. Unlike crystal materials, where particles are orderly and symmetrical across a long molecular distance, glasses’ disorder at the molecular level make them great for bending, fragmenting, or reflecting light.

Experimentalists from the University of Marburg recently synthesized a particular of glass called a “cluster glass.” Unlike a traditional glass that almost behaves as a liquid frozen in place, cluster glass, as the name implies, is a collection of separate clusters of molecules that behave as a powder at room temperature. They generate bright, clear, white light upon irradiation by infrared radiation.  While powders cannot easily be used to manufacture small, sensitive electronic components, the researchers found a way to re-cast them in glass form: “When we melt the powder, we obtain a material that has all the characteristics of a glass and can be put in any form needed for a specific application,” Sanna said.

While experimentalists were able to synthesize the material and observe its luminous properties, the group turned to Sanna and HPC to better understand how cluster glass behaves the way it does. Sanna pointed out that white light generation isn’t a property of a single molecule in a system, but the collective behaviors of a group of molecules. Charting these molecules’ interactions with one another and with their environment in a simulation therefore means that researchers must both capture the large-scale behaviors of light generation and also observe how small-scale atomic interactions influence the system. Any of these factors would be computationally challenging. Modeling these processes at multiple scales, however, is only possible using leading HPC resources like Hawk.

Collaboration between experimentalists and theoreticians has become increasingly important in materials science, as synthesizing many iterations of a similar material can be slow and expensive. High-performance computing, Sanna indicated, makes it much faster to identify and test materials with novel optical properties. “The relationship between theory and experiment is a continuous loop. We can predict the optical properties of a material that was synthesized by our chemist colleagues, and use these calculations to verify and better understand the material’s properties,” Sanna said. “We can also design new materials on a computer, providing information that chemists can use to focus on synthesizing compounds that have the highest likelihood of being useful. In this way, our models inspire the synthetization of new compounds with tailored optical properties”

In the case of cluster glass, this approach resulted in an experiment that was verified by simulation, with modelling helping to show the researchers the link between the observed optical properties and the molecular structure of their cluster glass material and can now move forward as a candidate to replace light sources heavily reliant on rare-earth metals.

HPC expedites R&D timelines

HPC plays a major role in helping researchers accelerate the timeline between new discovery and new product or technology. Sanna explained that HPC drastically cut down on the time to get a better understanding of cluster glass. “We spend a lot of time doing simulation, but it is much less than characterizing these materials in reality,” he said. “The clusters we model have a diamond-shaped core with 4 ligands (molecular chains) attached to it. Those ligands can be made of any number of things, so doing this in an experiment is time consuming.”

Sanna pointed out that the team is still limited by how long they can perform individual runs for their simulations. Many research projects on supercomputers can divide a complex system into many small parts and run calculations for each part in parallel. Sanna’s team needs to pay special attention to long-distance particle interactions across large systems, so they are limited by how much they can divide their simulation across computer nodes. He indicated that having regular access to longer run times—more than a day straight on a supercomputer—would allow the team to work more quickly.  

In ongoing studies of cluster glass Sanna’s team hopes to thoroughly understand the origin of its light generating properties. This could help to identify additional new materials and to determine how best to apply cluster glass in light generation.

Sanna explained that HPC resources at HLRS were essential for his team’s basic science research, which he hopes will lead to new products that can benefit society. “The main computational achievement in this journal article was only possible through our access to the machine in Stuttgart,” he said.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

Adblock test (Why?)



Source link

Continue Reading

Science

The sun is dying: Here’s how long it has before exhausting its fuel – Firstpost

Published

 on


A new study has estimated the sun’s evolutionary process will continue for billions of more years before it runs out of its fuel and turns into a red giant. It has revealed the past and future of the sun, how the sun will behave at what stage and when it will enter the dusk of its life

This handout photograph released by The European Space Agency (ESA) on July 16, 2020, shows an image of the Sun, roughly halfway between the Earth and the Sun. AFP

The sun is very likely going through its middle age, a recent study published in June this year by the European Space Agency (ESA), based on the observations from its Gaia spacecraft, has revealed.

The ESA’s Gaia telescope has revealed information that could help determine when the sun will die, which was formed around 4.57 billion years ago.

The study has estimated the sun’s evolutionary process to continue for billions of more years before it runs out of its fuel and turns into a red giant. The study has revealed the past and future of the sun, how the sun will behave at what stage and when it will enter the dusk of its life.

What has the ESA study revealed?

According to the report made public on 13 June, 2022, at the age of around 4.57 billion years, our sun is currently in its ”comfortable middle age, fusing hydrogen into helium and generally being rather stable; staid even”.

However, it will not be the case forever. The sun will eventually die. The information by ESA’s Gaia observatory has also revealed the process of its decay.

The sun is dying Heres how long it has before exhausting its fuel

Stellar evolution. ESA

“As the hydrogen fuel runs out in its core, and changes begin in the fusion process, we expect it to swell into a red giant star, lowering its surface temperature in the process.”

Exactly how this happens depends on how much mass a star contains and its chemical composition.

To deduce this, astronomer Orlagh Creevey, Observatoire de la Côte d’Azur, France, and collaborators from Gaia’s Coordination Unit 8, and colleagues combed the data looking for the most accurate stellar observations that the spacecraft could offer.

“We wanted to have a really pure sample of stars with high precision measurements,” says Orlagh.

When will the sun die?

The study found that the sun will reach a maximum temperature of approximately 8 billion years of age, before starting to cool down and increase in size.

“It will become a red giant star around 10–11 billion years of age. The Sun will reach the end of its life after this phase, when it eventually becomes a dim white dwarf.”

A white dwarf is a former star that has exhausted all its hydrogen that it once used as it central nuclear fuel and lost its outer layers as a planetary nebula.

“If we don’t understand our own Sun – and there are many things we don’t know about it – how can we expect to understand all of the other stars that make up our wonderful galaxy,” Orlagh said.

By identifying similar stars to the sun, but this time with similar ages, the observational gap can be bridged in how much we know about the sun compared to other stars in the universe.

To identify these ‘solar analogues’ in the Gaia data, Orlagh and colleagues looked for stars with temperatures, surface gravities, compositions, masses and radii that are all similar to the present-day Sun. They found 5863 stars that matched their criteria.

With inputs from agencies

Read all the Latest News, Trending NewsCricket News, Bollywood News,
India News and Entertainment News here. Follow us on Facebook, Twitter and Instagram.

Adblock test (Why?)



Source link

Continue Reading

Science

SLS ready to roll to LC-39B for launch, teams prepare for multiple launch trajectories – NASASpaceFlight.com – NASASpaceflight.com

Published

 on


NASA’s Space Launch System (SLS) rocket has completed all pre-launch preparations inside the Vehicle Assembly Building at the Kennedy Space Center in Florida and is ready for its 4.2-mile (6.7-km) journey to Launch Complex 39B.

The multi-hour rollout process is currently set to begin at 9 PM EDT on Tuesday, August 16 (01:00 UTC on Wednesday, August 17), weather permitting – which should result in a sunrise arrival at the pad.

The rollout is the last major milestone ahead of launch, which will differ from most recent missions in that the rocket’s needed azimuth — or flight path — will continuously change through each day’s launch window.

Launching to the Moon

Launching into a rendezvous orbit with a satellite or station in low Earth orbit can be relatively simplified as needing to launch directly into the plane – and therefore the same orbital inclination – of the target’s orbit.

For example, when launching to the International Space Station from Florida, the azimuth the rocket follows is 44.98°. This does not change based on when within the daily window liftoff occurs.

However, the same is not true when trying to launch into an intercept trajectory with the Moon.

[embedded content]

As related by Artemis 1 Ascent/Entry Flight Director Judd Frieling to NASASpaceflight during Artemis Day events in Mission Control at the Johnson Space Center, the Moon’s motion in its orbit coupled with its constantly-changing relative inclination to the launch site complicates the needed launch azimuth for SLS.

On each launch day, the azimuth SLS must fly moves incrementally, second-by-second, throughout the window to match the movement of the Moon relative to the Earth for the translunar injection (TLI) burn.

According to NASA, for SLS and Artemis 1, the azimuth at the opening of the window on all three launch attempts on August 29, September 2, and September 5 is 62°, resulting in a 38° inclination orbit.

At the end of each window, the azimuth flown would be 108° into a 32° inclination orbit.

But before SLS can be readied for its roll onto course on launch day, it must first arrive at the pad.

Rolling out for launch

The Artemis 1 launch rollout will mark the first time since May 31, 2011, that a vehicle will emerge from the Vehicle Assembly Building (VAB) at the Kennedy Space Center for launch operations.

SLS and Orion at LC-39B during preparations for the WDR (Credit: Julia Bergeron for NSF/L2)

As it has twice already for its wet dress rehearsal campaigns, the SLS rocket for Artemis 1 will make the journey to LC-39B atop crawler-transporter 2, one of two crawler-transporters owned by NASA and the only one modified to carry the full stack Artemis/SLS vehicle to the pad.

The upgrades were necessary due to the crawler’s age and the increased mass of the SLS vehicle with its combined Mobile Launcher (ML).

The combined SLS/ML weight is approximately 15 million pounds (6.8 million kg) and is significantly heavier than the previous record holder in the Space Shuttle at 12 million pounds (5.4 million kg).

Upgrades included a rating to handle 18 million pounds (8.1 million kg), a 50% greater load than was originally envisioned, as well as a new 1,500-kilowatt electrical power generator, parking and service brakes, redesigned and upgraded roller bearings, and several other modifications for the Artemis program.

Like the crawlers, their purpose-built road, the crawlerway, also underwent upgrades between Shuttle and SLS.

Beginning in 2013, the crawlerway’s foundations were repaired with new lime rock to return them to their original condition and ready them for the Block 1B SLS, presently scheduled for later this decade, which will be heavier than the Block 1 SLS used for Artemis 1.

The 15 million pound SLS and ML on LC-39B during Wet Dress Rehearsal. (Credit: Nathan Barker for NSF)

Additionally, 30,000 tons of new Alabama river rock were added to return the crawlerway to its optimal depth.

For Launch Complex 39B, which was used for Apollo, Skylab, Apollo-Soyuz, Space Shuttle, and Ares I-X missions, the pad was slowly modified in stages, beginning in the final years of the Shuttle program, into a clean pad configuration with three, 600-foot (183 m) lightning towers connected with catenary wires.

The clean pad is without the Shuttle-era fixed and rotating service structures that serviced the Shuttle stack.

The sound suppression system, flame trench, cabling, and other systems were also upgraded during the transition to SLS. Work on Pad 39B has also included a new 1.25 million gallon liquid hydrogen tank, though this is not yet complete and will not be used for Artemis 1.

Pad 39B’s clean pad configuration was designed to be able to handle different types of rockets as part of a multi-user spaceport emphasis. To date, only Northrop Grumman expressed interest in the pad share for their now-canceled OmegA rocket.

Artemis 1

Artemis 1 is scheduled to spend 13 days at Pad 39B after the August 16 rollout. During this time, the ML will be hooked up to the plumbing servicing the rocket with liquid oxygen, liquid hydrogen, helium, and liquid nitrogen.

Crawler-Transporter-2 (CT-2) during rollout testing. (Credit: NASA)

Other round systems required for the launch will also be activated while teams conduct system checks on the SLS and Orion. Should all go well, the stage will be set for the 60th overall launch — and the second flight to the Moon after Apollo 10 — from Pad 39B.

The Artemis 1 countdown is currently scheduled to begin with Call To Stations at 9:53 AM EDT (13:53 UTC) on August 27. Fueling would begin early in the morning of August 29 for a two-hour launch window opening at 8:33 AM EDT (12:33 UTC).

Overall, Artemis 1 has 25 days to launch after the flight termination system (FTS) testing on the launch vehicle was completed on August 12.

Should Artemis 1 not be able to launch on August 29, launch windows for September 2 and 5 are available.

The two-hour September 2 launch window starts at 12:48 PM EDT (16:48 UTC) while the September 5 window lasts for 90 minutes, starting at 5:12 PM EDT (21:12 UTC).

Should Artemis 1 not be able to make any of the launch windows, crawler-transporter 2 would return to Pad 39B to roll the stack back to the VAB for FTS replacement and any other work the vehicle or ML might need before the next available launch window, most likely October 17 through 31.

Together, the first two SLS/Orion Artemis missions will pave the way for the first human lunar landing since 1972 on Artemis 3, currently scheduled for no earlier than late 2025.

Artemis 3 will use the SLS and Orion to ferry astronauts to lunar orbit, where a waiting SpaceX Starship lander procured under the HLS contract will transport them to and from the surface near the Moon’s south pole.

Just under 50 years after humanity last left the Moon in December 1972, Artemis 1 stands ready to begin our return journey. This time, to stay.

(Lead photo: SLS basking in the morning sun at LC-39B. Credit: Stephen Marr for NSF)

Adblock test (Why?)



Source link

Continue Reading

Trending