adplus-dvertising
Connect with us

Science

The protein dress of a neuron – EurekAlert

Published

 on


IMAGE: A new method to label proteins in the fruit fly shows the receptors and their position within neurons of the visual system.
view more 

Credit: MPI of Neurobiology/ Kuhl

Where in a nerve cell is a certain receptor protein located? Without an answer to this question, it is difficult to draw firm conclusions about the function of this protein. Two scientists at the Max Planck Institute of Neurobiology developed a method in the fruit fly that marks receptor proteins in selected cells. In this way, they gained new insights into the neuronal mechanisms of motion vision. In addition, the research community receives an innovative tool to label proteins of all kinds.

300x250x1

One of the most fundamental questions in neurobiology is how sensory inputs are processed within the neuronal circuits of the brain. Thereby, it is not only important to understand which neurons are connected via synapses, but also how they communicate with each other. Receptors play a decisive role in this process.

These special proteins sit in the membrane envelope of neurons and specifically at synapses, where they receive incoming signals from other cells. Depending on receptor type and position, they determine how the cells react to incoming information: are they activated or inhibited, and how quickly does this happen? To understand a neural network in its entirety, it is therefore essential to study receptors and their distribution in neurons. However, this is not an easy task.

Some established methods provide little or no information about the distribution of proteins. Other techniques allow the labelling of receptors artificially introduced into cells, but not of naturally occurring ones. Therefore, the PhD students Sandra Fendl and Renee Vieira from Alexander Borst’s department used the genetic resources available in the fruit fly Drosophila and developed a method to label proteins.

With the new technique, endogenous receptors are labeled with the green fluorescent protein – and only in selected cells. The latter is essential for assigning the labeled receptors within the dense neuronal network to those cells that are of particular interest.

Using this method, the scientists analyzed receptors in neurons that process movements in the visual system of the fruit fly. They found that different receptors are not randomly arranged along neurons. Even within a dendrite, the part of a neuron that receives incoming signals, receptor proteins are distributed in a very characteristic way.

With a precision of a few micrometers, the study shows, which synapse meets which receptor along the dendrite. Now predictions can be made about the properties of individual nerve cell connections. This adds another important puzzle piece towards a comprehensive picture of the neuronal circuits in the visual system of the fruit fly.

But that’s not all: the new tool can be easily extended to thousand other proteins as well. In the future, countless proteins can be labeled and examined in selected cells – and this goes clearly beyond the specific neurobiological question of fly motion vision.

###

Original publication

Sandra Fendl, Renee M. Vieira, Alexander Borst
Conditional protein tagging methods reveal highly specific subcellular distribution of ion channels in motion-sensing neurons

eLife 2020;9:e62953

Oct. 20, 2020

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

Let’s block ads! (Why?)

728x90x4

Source link

Continue Reading

Science

SpaceX sends 23 Starlink satellites into low-Earth orbit

Published

 on

April 23 (UPI) — SpaceX launched 23 Starlink satellites into low-Earth orbit Tuesday evening from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.

Liftoff occurred at 6:17 EDT with a SpaceX Falcon 9 rocket sending the payload of 23 Starlink satellites into orbit.

The Falcon 9 rocket’s first-stage booster landed on an autonomous drone ship in the Atlantic Ocean after separating from the rocket’s second stage and its payload.

The entire mission was scheduled to take about an hour and 5 minutes to complete from launch to satellite deployment.

300x250x1

The mission was the ninth flight for the first-stage booster that previously completed five Starlink satellite-deployment missions and three other missions.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

NASA Celebrates As 1977’s Voyager 1 Phones Home At Last

Published

 on

Voyager 1 has finally returned usable data to NASA from outside the solar system after five months offline.

Launched in 1977 and now in its 46th year, the probe has been suffering from communication issues since November 14. The same thing also happened in 2022. However, this week, NASA said that engineers were finally able to get usable data about the health and status of its onboard engineering systems.

Slow Work

Fixing Voyager 1 has been slow work. It’s currently over 15 billion miles (24 billion kilometers) from Earth, which means a radio message takes about 22.5 hours to reach it—and the same again to receive an answer.

The problem appears to have been its flight data subsystem, one of one of the spacecraft’s three onboard computers. Its job is to package the science and engineering data before it’s sent to Earth. Since the computer chip that stores its memory and some of its code is broken, engineers had to re-insert that code into a new location.

300x250x1

Next up for engineers at NASA’s Jet Propulsion Laboratory in California is to adjust other parts of the FDS software so Voyager 1 can return to sending science data.

Beyond The ‘Heliopause’

The longest-running and most distant spacecraft in history, Voyager 1, was launched on September 5, 1977, while its twin spacecraft, Voyager 2, was launched a little earlier on August 20, 1977. Voyager 2—now 12 billion miles away and traveling more slowly—continues to operate normally.

Both are now beyond what astronomers call the heliopause—a protective bubble of particles and magnetic fields created by the sun, which is thought to represent the sun’s farthest influence. Voyager 1 got to the heliopause in 2012 and Voyager 2 in 2018.

Pale Blue Dot

Since their launch from Cape Canaveral, Florida, aboard Titan-Centaur rockets, Voyager 1 and Voyager 2 have had glittering careers. Both photographed Jupiter and Saturn in 1979 and 1980 before going their separate ways. Voyager 1 could have visited Pluto, but that was sacrificed so scientists could get images of Saturn’s moon, Titan, a maneuver that made it impossible for it to reach any other body in the solar system. Meanwhile, Voyager 2 took slingshots around the planets to also image Uranus in 1986 and Neptune in 1989—the only spacecraft ever to image the two outer planets.

On February 14, 1990, when 3.7 billion miles from Earth, Voyager 1 turned its cameras back towards the sun and took an image that included our planet as “a mote of dust suspended in a sunbeam.” Known as the “Pale Blue Dot,” it’s one of the most famous photos ever taken. It was remastered in 2019.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

NASA hears from Voyager 1, the most distant spacecraft from Earth, after months of quiet

Published

 on

 

CAPE CANAVERAL, Fla. (AP) – NASA has finally heard back from Voyager 1 again in a way that makes sense.

The most distant spacecraft from Earth stopped sending back understandable data last November. Flight controllers traced the blank communication to a bad computer chip and rearranged the spacecraft’s coding to work around the trouble.

NASA’s Jet Propulsion Laboratory in Southern California declared success after receiving good engineering updates late last week. The team is still working to restore transmission of the science data.

300x250x1

It takes 22 1/2 hours to send a signal to Voyager 1, more than 15 billion miles (24 billion kilometers) away in interstellar space. The signal travel time is double that for a round trip.

Contact was never lost, rather it was like making a phone call where you can’t hear the person on the other end, a JPL spokeswoman said Tuesday.

Launched in 1977 to study Jupiter and Saturn, Voyager 1 has been exploring interstellar space – the space between star systems – since 2012. Its twin, Voyager 2, is 12.6 billion miles (20 billion kilometers) away and still working fine.

 

728x90x4

Source link

Continue Reading

Trending