Connect with us

Science

The World's Most Sensitive Dark Matter Detector has Come Online – Universe Today

Published

 on


Individual contributors have become less and less prominent in scientific fields as the discipline itself has matured. Some individuals still hold the public spotlight for their discoveries, such as Peter Higgs with the Higgs boson, which several other physicists also theorized around the same time he did. However, the actual data that eventually gave Dr. Higgs and François Englert their Nobel prize were collected by the Large Hadron Collider, arguably one of the largest technical projects that took thousands of scientists decades to design, build, and test.  

Sub-atomic particles aren’t the only things that need large, complex detectors to study. With help from an underground research facility in South Dakota, a team from Lawrence Berkeley National Laboratory has developed, deployed, and tested the world’s most sensitive dark matter detection system.

The project, known as LUX-ZEPLIN, or LZ, has a history that would give any project manager nightmares. A team of 250 scientists and engineers from 35 different institutions collaborated on the project, whose primary detector was delivered to its underground home in South Dakota just before the COVID pandemic forced many of those participants to stay at home institutions for the next two years.

[embedded content]
UT video explaining the hunt for Dark Matter.

Despite all of LZ’s troubles, in December of 2021, it was formally brought online and began collecting data. That data formed the basis of a recent paper, proving that LZ is the most sensitive dark matter detector ever created.

That is not to say that it actually saw any dark matter in its first run. Notoriously tricky to detect using any method other than gravity, dark matter remains an enigma to this day. But scientists have honed in on a detection methodology that they think will help them understand it better, and it’s this technology that forms the basis of LZ’s system.

Inside of the LZ's main detector.  This would normally be filled with liquid xenon.
Inside of the LZ’s main detector. This would normally be filled with liquid xenon.
Credit – Matthew Kapust

A giant tank filled with liquid xenon comprises the bulk of the system, with an array of photomultiplier tubes (PMTs) that can detect when one of the myriad xenon atoms is smacked by a particle that could “mimic a dark matter signal.” In that case, the atom lights up, which is then detected by one of the PMTs, which can also isolate the spatial area and direction the particle was traveling.

If the detector itself was above ground, too many of these particles would create too much noise compared to the dark matter signal. Hence, why the detector is located under the Earth’s surface at the Sanford Underground Research Facility (SURF). SURF also hosts other sensitive experiments that benefit from the shielding afforded by the Earth’s surface, so LZ fits right in with the rest.  

Schematic (left) and illustration (right) of the LZ experiment in operation.
Schematic (left) and illustration (right) of the LZ experiment in operation.
credit – LZ Collaboration / LZ / SLAC

So far, LZ has only a few months of operation, but even those results excite the team that had initially designed and built the detector. There’s plenty more science to come, though, with the plan currently to collect 20 times more data than has been so far. Given the difficulty in detecting dark matter and science’s general penchant that more data is better, that sounds like an excellent proposition for finding dark matter if it does exist. Maybe the experiment with the Latin word for light in its name will be the first to shine some light on the mystery of dark matter.

Learn More:
SURF – Researchers record successful startup of LUX-ZEPLIN dark matter detector at Sanford Underground Research Facility
LBNL – The LZ Dark Matter Experiment
UT – New Dark Matter Detector Draws A Blank In First Test Round
UT – Searching for Dark Matter Inside the Earth

Lead Image:
Some of the team members responsible for the LUX-ZEPLIN experiment.
Credit – Matthew Kapust

Adblock test (Why?)



Source link

Continue Reading

Science

NASA Wants To Mine The Moon, But Law Experts Say It's Not That Simple – SlashGear

Published

 on


The first roadblock facing humans as we seek to expand our presence in the solar system lies in technology. NASA reports that it takes about seven months (measured in Earth days) to travel from our planet’s surface to Mars. Thrillist notes that travel to the Moon only requires a three-day journey, while exploration of Jupiter or Saturn (the next bodies out from Mars) would require a lengthy, six- or seven-year voyage, respectively. On a technical level, our current means of launching satellites and humans at these distant bodies is exactly that, a launch (via NASA). In order to make space travel more feasible for human explorers, we would need to develop a propulsion system that could continually deliver powered flight to a spacecraft, or at least the ability to continually augment flight speed, rather than simply relying on initial launch velocity to carry the craft along to its final destination.

This means a combination of two distinct realities: Humans must develop a brand new means of propulsion that requires far less storage space and mass, a revolutionary idea to be sure; and we must develop the ability to hop between planets and refuel along this lengthy journey. Therefore, technological advancement that would support increased space travel would require both colonization and a capacity for extracting mineral resources from the surfaces of neighboring planets and moons. Continuous habitation in new worlds would be required to support these efforts.

Adblock test (Why?)



Source link

Continue Reading

Science

Good planning gets the bike rolling – Science Daily

Published

 on


In surveys, a large majority of respondents usually agree that cycling can make a significant contribution to reducing greenhouse gases and to sustainable transport, especially in densely populated areas. In contrast, for many countries in reality there is a large gap between desired and actual numbers. In Germany, for example, only 20% of the short-distance of everyday trips in residential environments are covered by bicycle.

When asked about the reasons, one point repeatedly comes up top of the list: The perceived or actual lack of safety on the bike routes used. Increasing the share of cycling trips in the modal split thus depends crucially on a well-developed bike path infrastructure. However, designing efficient bike path networks is a complex problem that involves balancing a variety of constraints while meeting overall cycling demand. In addition, many municipalities still only have small budgets available for improving bicycle infrastructure.

In their study, researchers from the Chair of Network Dynamics / Center for Advancing Electronics Dresden (cfaed) at TU Dresden propose a new approach to generate efficient bike path networks. This explicitly considers the demand distribution and route choice of cyclists based on safety preferences. Typically, minimizing the travel distance is not the only goal, but aspects such as (perceived) safety or attractiveness of a route are also taken into account.

The starting point of this approach is a reversal of the usual planning process: Under real conditions, a bike path network is created by constantly adding bike paths to more streets. The cfaed scientists, on the contrary, start with an ideal, complete network, in which all streets in a city are equipped with a bike path. In a virtual process, they gradually remove individual, less used bike path segments from this network. The route selection of the cyclists is continuously updated. Thus, a sequence of bike path networks is created that is always adapted to the current usage. Each stage of this sequence corresponds to a variant that could be implemented with less financial effort. In this way, city planners can select the version that fits their municipality’s budget.

“In our study, we illustrate the applicability of this demand-driven planning scheme for dense urban areas of Dresden and Hamburg,” explains Christoph Steinacker, first author of the study. “We approach a real-life issue here using the theoretic toolbox of network dynamics. Our approach allows us to compare efficient bike path networks under different conditions. For example, it allows us to measure the influence of different demand distributions on the emerging network structures.” The proposed approach can thus provide a quantitative assessment of the structure of current and planned bike path networks and support demand-driven design of efficient infrastructures.

Story Source:

Materials provided by Technische Universität Dresden. Note: Content may be edited for style and length.

Adblock test (Why?)



Source link

Continue Reading

Science

Laughing gas in space could mean life

Published

 on

To date, over 5000 exoplanetary systems have been discovered. Biosignatures are chemical components in a planet’s atmosphere that may indicate life, and they frequently include abundant gases in our planet’s atmosphere.

Scientists at UC Riverside suggest something is missing from the typical roster of chemicals astrobiologists use to search for life on planets around other stars — laughing gas.

Eddie Schwieterman, an astrobiologist in UCR’s Department of Earth and Planetary Sciences, said, “There’s been a lot of thought put into oxygen and methane as biosignatures. Fewer researchers have seriously considered nitrous oxide, but we think that may be a mistake.”

To reach this conclusion, scientists determined how much nitrous oxide a planet like Earth could conceivably produce. After that, they created simulations of that planet orbiting various types of stars and calculated the amounts of N2O that could be captured by a telescope like the James Webb Space Telescope.

Nitrous oxide, or N2O, is a gas produced in various ways by living things. Microorganisms continuously convert other nitrogen molecules into N2O through a metabolic process that can produce useful cellular energy.

Schwieterman said, “Life generates nitrogen waste products that are converted by some microorganisms into nitrates. In a fish tank, these nitrates build-up, which is why you have to change the water. However, under the right conditions in the ocean, certain bacteria can convert those nitrates into N2O. The gas then leaks into the atmosphere.”

N2O can be found in an environment and still not be an indication of life in some situations. This was considered in the new modeling. For instance, lightning can produce a small amount of nitrous oxide. However, lightning also produces nitrogen dioxide, giving astrobiologists a hint that non-living meteorological or geological processes produced the gas.

Others who have considered N2O as a biosignature gas often conclude it would be difficult to detect from so far away. Schwieterman explained that this conclusion is based on N2O concentrations in Earth’s atmosphere today. Because there isn’t much of it on this planet, which is teeming with life, some believe it would also be hard to detect elsewhere.

Schwieterman said“This conclusion doesn’t account for periods in Earth’s history where ocean conditions would have allowed for the much greater biological release of N2O. Conditions in those periods might mirror where an exoplanet is a today.”

“Common stars like K and M dwarfs produce a light spectrum that is less effective at breaking up the N2O molecule than our sun is. These two effects combined could greatly increase the predicted amount of this biosignature gas on an inhabited world.”

The study was conducted in collaboration with Purdue University, the Georgia Institute of Technology, American University, and the NASA Goddard Space Flight Center.

Journal Reference:

  1. Edward W. Schwieterman, Stephanie L. Olson et al. Evaluating the Plausible Range of N2O Biosignatures on Exo-Earths: An Integrated Biogeochemical, Photochemical, and Spectral Modeling Approach. The Astrophysical Journal. DOI: 10.3847/1538-4357/ac8cfb

Source link

Continue Reading

Trending