Connect with us

Science

These Tiny, Little-Winged Dinosaurs Were Probably Worse at Flying Than Chickens – ScienceAlert

Published

 on


The discovery of two small dinosaurs with bat-like wings a few years ago was a palaeontologist’s dream. Just how flight evolved in birds is something we’re still trying to nail down, and looking at this early evolution of bat-like wings in dinosaurs could give us a clue.  

But a team of researchers has now pointed out that just because you have wings, it doesn’t necessarily mean you’re actually any good at flying.

Yi qi and Ambopteryx longibrachium are two species of theropod dinosaurs that lived around 160 million years ago, both of which had unusually elongated fingers, and a skin membrane stretching between them, similar to a bat’s wing.

This is an entirely different kind of wing to the one theropod dinosaurs evolved to fly with – the dinosaurs that eventually became birds. And, unlike them, after only a few million years, Yi and Ambopteryx became extinct, which is the first hint that these unusual wings could not match those birds-to-be. 

However, weird wings on extinct critters mean it’s likely multiple types of wings (and therefore flight) evolved over the years, and that Yi and Ambopteryx’s attempts were not the winning strategy.

But before you can write off Yi and Ambopteryx as complete evolutionary flight failures, you have to know how good (or bad, as the case may be) the two species were at flight.

In 2015, when Yi was found, that team of researchers suggested that the size of its wings and other flight characteristics could mean it was a gliding creature – however it’s unlike any other glider we know of, and its centre of mass might have made even gliding difficult. We just weren’t sure.

A new study, by researchers in the US and China, has now looked into the flight potential of Yi and Ambopteryx in a lot more detail, and come to the conclusion that they really weren’t good at getting their little feet off the trees they lived in.

“Using laser-stimulated fluorescence imaging, we re-evaluate their anatomy and perform aerodynamic calculations covering flight potential, other wing-based behaviours, and gliding capabilities,” the team writes.

“We find that Yi and Ambopteryx were likely arboreal, highly unlikely to have any form of powered flight, and had significant deficiencies in flapping-based locomotion and limited gliding abilities.”

The team’s analysis of the fossils (Yi pictured below) was able to pick up tiny details in soft-tissue that you can’t see with normal light.

Fossil of Yi qi. Look how fluffy it is! (kmkmks/Flickr/CC BY SA 2.0)

Then the team modelled how the dinosaurs might have flown, adjusting for things such as weight, wingspan, and muscle placement (all stuff we can’t tell just from the fossils).

The results were… underwhelming.

“They really can’t do powered flight,” says first author, biologist Thomas Dececchi from Mount Marty University.

“You have to give them extremely generous assumptions in how they can flap their wings. You basically have to model them as the biggest bat, make them the lightest weight, make them flap as fast as a really fast bird, and give them muscles higher than they were likely to have had to cross that threshold. They could glide, but even their gliding wasn’t great.”

gr1Soft-tissue map of Yi qi. (Dececchi et al., iScience, 2020)

So, according to Dececchi and his team’s model, we’re looking at flying capabilities considerably worse than a chicken, perhaps worse than the flightless New Zealand parrot, the kakapo, which is also mostly limited to gliding from trees, but can at least flap to control descent.

But although it’s a bit sad for the Yi and Ambopteryx, it’s good news for us – the findings give even more evidence that dinosaurs evolved flight (or at least tried to) multiple times.

As the team points out, considering all the types of bats, gliders, flying squirrels, and other gliding or flying mammals, maybe it shouldn’t be a surprise.

“We propose that this clade was an independent colonisation of the aerial realm for non-avialan theropods. If true, this would represent at least two, but more likely three or more attempts at flight (both powered and gliding) by small pennaraptoran theropods during the Mesozoic,” the team writes in their paper.

“Given the large number of independent occurrences of gliding flight within crown mammals, this should perhaps be unsurprising, but it does create a more complex picture of the aerial ecosystem.”

Seems like some things don’t change much, even in a hundred million years.

The research has been published in iScience.

Let’s block ads! (Why?)



Source link

Continue Reading

Science

Japan awaits capsule's return with asteroid soil samples – North Shore News

Published

 on


TOKYO — Japan’s Hayabusa2 spacecraft successfully released a small capsule on Saturday and sent it toward Earth to deliver samples from a distant asteroid that could provide clues to the origin of the solar system and life on our planet, the country’s space agency said.

The capsule successfully detached from 220,000 kilometres (136,700 miles) away in a challenging operation that required precision control, the Japan Aerospace Exploration Agency said. The capsule — just 40 centimetres (15 inches) in diameter — is now descending and is expected to land Sunday in a remote, sparsely populated area of Woomera, Australia.

“The capsule has been separated. Congratulations,” JAXA project manager Yuichi Tsuda said.

Hayabusa2 left the asteroid Ryugu, about 300 million kilometres (180 million miles) away, a year ago. After it released the capsule, it moved away from Earth to capture images of the capsule descending toward the planet as it set off on a new expedition to another distant asteroid.

About two hours later, JAXA said it had successfully rerouted Hayabusa2 for its new mission, as beaming staff exchanged fist and elbow touches at the agency’s command centre in Sagamihara, near Tokyo.

“We’ve successfully come this far, and when we fulfil our final mission to recover the capsule, it will be perfect,” mission manager Makoto Yoshikawa said from the command centre during a livestreaming event.

People who gathered to watch the capsule’s separation at public viewing events across Japan cheered the success. ”I’m really glad that the capsule has been successfully released. My heart was beating fast when I was watching,” said Ichiro Ryoko, a 60-year-old computer engineer who watched at Tokyo Dome.

Hayabusa2’s return with the world’s first asteroid subsurface samples comes weeks after NASA’s OSIRIS-REx spacecraft made a successful touch-and-go grab of surface samples from asteroid Bennu. China, meanwhile, announced this week that its lunar lander collected underground samples and sealed them within the spacecraft for their return to Earth, as space developing nations compete in their missions.

In the early hours of Sunday, the capsule, protected by a heat shield, will briefly turn into a fireball as it reenters the atmosphere 120 kilometres (75 miles) above Earth. At about 10 kilometres (6 miles) aboveground, a parachute will open to slow its fall and beacon signals will be transmitted to indicate its location.

JAXA staff have set up satellite dishes at several locations in the target area to receive the signals. They also will use a marine radar, drones and helicopters to assist in the search and retrieval of the pan-shaped capsule.

Australian National University space rock expert Trevor Ireland, who is in Woomera for the arrival of the capsule, said he expected the Ryugu samples to be similar to the meteorite that fell in Australia near Murchison in Victoria state more than 50 years ago.

“The Murchison meteorite opened a window on the origin of organics on Earth because these rocks were found to contain simple amino acids as well as abundant water,” Ireland said. “We will examine whether Ryugu is a potential source of organic matter and water on Earth when the solar system was forming, and whether these still remain intact on the asteroid.”

Scientists say they believe the samples, especially ones taken from under the asteroid’s surface, contain valuable data unaffected by space radiation and other environmental factors. They are particularly interested in analyzing organic materials in the samples.

JAXA hopes to find clues to how the materials are distributed in the solar system and are related to life on Earth. Yoshikawa, the mission manager, said 0.1 gram of the dust would be enough to carry out all planned researches.

For Hayabusa2, it’s not the end of the mission it started in 2014. It is now heading to a small asteroid called 1998KY26 on a journey slated to take 10 years one way, for possible research including finding ways to prevent meteorites from hitting Earth.

So far, its mission has been fully successful. It touched down twice on Ryugu despite the asteroid’s extremely rocky surface, and successfully collected data and samples during the 1 1/2 years it spent near Ryugu after arriving there in June 2018.

In its first touchdown in February 2019, it collected surface dust samples. In a more challenging mission in July that year, it collected underground samples from the asteroid for the first time in space history after landing in a crater that it created earlier by blasting the asteroid’s surface.

Asteroids, which orbit the sun but are much smaller than planets, are among the oldest objects in the solar system and therefore may help explain how Earth evolved.

Ryugu in Japanese means “Dragon Palace,” the name of a sea-bottom castle in a Japanese folk tale.

___

Associated Press writers Dennis Passa in Brisbane, Australia, and Chisato Tanaka in Tokyo contributed to this report.

___

Follow Mari Yamaguchi on Twitter at https://www.twitter.com/mariyamaguchi

Mari Yamaguchi, The Associated Press









Let’s block ads! (Why?)



Source link

Continue Reading

Science

Japan awaits capsule's return with asteroid soil samples – Burnaby Now

Published

 on


TOKYO — Japan’s Hayabusa2 spacecraft successfully released a small capsule on Saturday and sent it toward Earth to deliver samples from a distant asteroid that could provide clues to the origin of the solar system and life on our planet, the country’s space agency said.

The capsule successfully detached from 220,000 kilometres (136,700 miles) away in a challenging operation that required precision control, the Japan Aerospace Exploration Agency said. The capsule — just 40 centimetres (15 inches) in diameter — is now descending and is expected to land Sunday in a remote, sparsely populated area of Woomera, Australia.

Hayabusa2 left the asteroid Ryugu, about 300 million kilometres (180 million miles) away, a year ago. After it released the capsule, it moved away from Earth to capture images of the capsule descending toward the planet as it set off on a new expedition to another distant asteroid.

About two hours later, JAXA said it had successfully rerouted Hayabusa2 for its new mission, as beaming staff exchanged fist and elbow touches at the agency’s command centre in Sagamihara, near Tokyo.

“We’ve successfully come this far, and when we fulfil our final mission to recover the capsule, it will be perfect,” mission manager Makoto Yoshikawa said from the command centre during a livestreaming event.

Hayabusa2’s return with the world’s first asteroid subsurface samples comes weeks after NASA’s OSIRIS-REx spacecraft made a successful touch-and-go grab of surface samples from asteroid Bennu. China, meanwhile, announced this week that its lunar lander collected underground samples and sealed them within the spacecraft for their return to Earth, as space developing nations compete in their missions.

Many Hayabusa2 fans gathered to watch the capsule’s separation at public viewing events across Japan, including one at the Tokyo Dome stadium.

In the early hours of Sunday, the capsule, protected by a heat shield, will briefly turn into a fireball as it reenters the atmosphere 120 kilometres (75 miles) above Earth. At about 10 kilometres (6 miles) aboveground, a parachute will open to slow its fall and beacon signals will be transmitted to indicate its location.

JAXA staff have set up satellite dishes at several locations in the target area to receive the signals. They also will use a marine radar, drones and helicopters to assist in the search and retrieval of the pan-shaped capsule.

Australian National University space rock expert Trevor Ireland, who is in Woomera for the arrival of the capsule, said he expected the Ryugu samples to be similar to the meteorite that fell in Australia near Murchison in Victoria state more than 50 years ago.

“The Murchison meteorite opened a window on the origin of organics on Earth because these rocks were found to contain simple amino acids as well as abundant water,” Ireland said. “We will examine whether Ryugu is a potential source of organic matter and water on Earth when the solar system was forming, and whether these still remain intact on the asteroid.”

Scientists say they believe the samples, especially ones taken from under the asteroid’s surface, contain valuable data unaffected by space radiation and other environmental factors. They are particularly interested in analyzing organic materials in the samples.

JAXA hopes to find clues to how the materials are distributed in the solar system and are related to life on Earth. Yoshikawa, the mission manager, said 0.1 gram of the dust would be enough to carry out all planned researches.

For Hayabusa2, it’s not the end of the mission it started in 2014. It is now heading to a small asteroid called 1998KY26 on a journey slated to take 10 years one way, for possible research including finding ways to prevent meteorites from hitting Earth.

So far, its mission has been fully successful. It touched down twice on Ryugu despite the asteroid’s extremely rocky surface, and successfully collected data and samples during the 1 1/2 years it spent near Ryugu after arriving there in June 2018.

In its first touchdown in February 2019, it collected surface dust samples. In a more challenging mission in July that year, it collected underground samples from the asteroid for the first time in space history after landing in a crater that it created earlier by blasting the asteroid’s surface.

Asteroids, which orbit the sun but are much smaller than planets, are among the oldest objects in the solar system and therefore may help explain how Earth evolved.

Ryugu in Japanese means “Dragon Palace,” the name of a sea-bottom castle in a Japanese folk tale.

___

Associated Press writer Dennis Passa in Brisbane, Australia, contributed to this report.

___

Follow Mari Yamaguchi on Twitter at https://www.twitter.com/mariyamaguchi

Mari Yamaguchi, The Associated Press









Let’s block ads! (Why?)



Source link

Continue Reading

Science

Japan awaits spacecraft return with asteroid soil samples – Toronto Star

Published

 on


TOKYO – Japan’s space agency said the Hayabusa2 spacecraft successfully separated a capsule and sent it toward Earth to deliver samples from a distant asteroid that could provide clues to the origin of the solar system and life on our planet.

The Japan Aerospace Exploration Agency said the capsule successfully detached Saturday afternoon from 220,000 kilometres (136,700 miles) away in a challenging operation that required precision control. The capsule is now descending to land in a remote, sparsely populated area of Woomera, Australia, on Sunday.

Hayabusa2 left the asteroid Ryugu, about 300 million kilometres (180 million miles) away, a year ago. After the capsule release, it is now moving away from Earth to capture images of the capsule descending to the planet.

Yuichi Tsuda, project manager at the space agency JAXA, stood up and raised his fists as everyone applauded the moment command centre officials confirmed the successful separation of the capsule.

Hayabusa2’s return with the world’s first asteroid subsurface samples comes weeks after NASA’s OSIRIS-REx spacecraft made a successful touch-and-go grab of surface samples from asteroid Bennu. China, meanwhile, announced this week its lunar lander collected underground samples and sealed them within the spacecraft for return to Earth, as space developing nations compete in their missions.

Many Hayabusa2 fans gathered to observe the moment of the capsule separation at public viewing events across the country, including one at the Tokyo Dome stadium.

In the early hours of Sunday, the capsule, protected by a heat shield, will briefly turn into a fireball as it reenters the atmosphere 120 kilometres (75 miles) above Earth. At about 10 kilometres (6 miles) above ground, a parachute will open to slow its fall and beacon signals will be transmitted to indicate its location.

JAXA staff have set up satellite dishes at several locations in the target area to receive the signals, while also preparing a marine radar, drones and helicopters to assist in the search and retrieval of the pan-shaped capsule, 40 centimetres (15 inches) in diameter.

Australian National University space rock expert Trevor Ireland, who is in Woomera for the arrival of the capsule, said he expected the Ryugu samples to be similar to the meteorite that fell in Australia near Murchison in Victoria state more than 50 years ago.

“The Murchison meteorite opened a window on the origin of organics on Earth because these rocks were found to contain simple amino acids as well as abundant water,” Ireland said, “We will examine whether Ryugu is a potential source of organic matter and water on Earth when the solar system was forming, and whether these still remain intact on the asteroid.”

Scientists say they believe the samples, especially ones taken from under the asteroid’s surface, contain valuable data unaffected by space radiation and other environmental factors. They are particularly interested in analyzing organic materials in the samples.

JAXA hopes to find clues to how the materials are distributed in the solar system and are related to life on Earth.

For Hayabusa2, it’s not the end of the mission it started in 2014. After dropping the capsule, it will return to space and head to another distant small asteroid called 1998KY26 on a journey slated to take 10 years one way, for a possible research including finding ways to prevent meteorites from hitting Earth.

So far, its mission has been fully successful. It touched down twice on Ryugu despite its extremely rocky surface, and successfully collected data and samples during the 1 1/2 years it spent near Ryugu after arriving there in June 2018.

In its first touchdown in February 2019, it collected surface dust samples. In a more challenging mission in July that year, it collected underground samples from the asteroid for the first time in space history after landing in a crater that it created earlier by blasting the asteroid’s surface.

Asteroids, which orbit the sun but are much smaller than planets, are among the oldest objects in the solar system and therefore may help explain how Earth evolved.

Ryugu in Japanese means “Dragon Palace,” the name of a sea-bottom castle in a Japanese folk tale.

___

Loading…

Loading…Loading…Loading…Loading…Loading…

Associated Press writer Dennis Passa in Brisbane, Australia, contributed to this report.

___

Follow Mari Yamaguchi on Twitter at https://www.twitter.com/mariyamaguchi

Let’s block ads! (Why?)



Source link

Continue Reading

Trending