adplus-dvertising
Connect with us

Science

‘This is certainly different’: Astronauts on controlling the Dragon spacecraft via touchscreen – TechCrunch

Published

 on


Building a brand new spacecraft means knowing when to innovate and when to stick to flight-proven methods, and for Crew Dragon, SpaceX decided to ditch the buttons and dials and go full touchscreen. The astronauts who will fly it later this month have had likewise to ditch years of training and muscle memory — but it’s not all bad, they say.

Bob Behnken and Doug Hurley, the two astronauts soon to launch to the International Space Station aboard a Dragon capsule, will be the first to actually fly the craft in space.

“It’s probably a dream of every test pilot school student to have the opportunity to fly on a brand-new spaceship, and I’m lucky enough to get that opportunity with my good friend here,” said Behnken in a press interview broadcast by NASA .

300x250x1

Of course they’re more than adequately prepared — not only have they spent countless hours in simulators, but they collaborated with SpaceX from early days.

“It was on the order of at least 5 or 6 years ago that we went out to SpaceX and evaluated a bunch of different control mechanisms,” said Hurley. “They were looking at every which way of flying the vehicle, and ultimately they decided on a touchscreen interface.”

“Of course, you know, growing up as a pilot my whole career, having a certain way to control the vehicle, this is certainly different,” he continued. “But we went into it with a very open mind, I think, and worked with them to define the way you interface with it — the way your touches actually registered on the display, in order to be able to fly it cleanly and not make mistakes touching it, not potentially putting in a wrong input.”

Compare the photo at the top of the story with the following shot of the physical simulator where astronauts learn to pilot the Russian Soyuz capsule:

Not a lot of leg room in either one, to be honest.

And of course even modern aircraft are still a mess of physical controls, no doubt familiar to the pilot but inarguably dated in design.

Behnke pointed out that these spacecraft are made with a very specific purpose in mind: Going to and docking with the ISS. No one is going to Mars in one of these things, and that impacts how they’re designed and piloted.

“The flying task is very unique: To come close to the space station and fly in proximity, then slowly come into contact, is maybe a little bit different from what you would see for flying a space shuttle or an aircraft,” said Behnke with characteristic understatement (the difference is night and day). “When we evaluated the touchscreen interface we really did focus on the task at hand and trying to get good performance for that specific task.”

A prototype Crew Dragon has already launched to the ISS and returned, having been piloted both autonomously and remotely.

“It was challenging for us and for them at first to work through those different design issues, but we got to a point where the vehicle, from the manual flying standpoint with the touchscreen, flies very well,” said Hurley.

“The difference is you’ve got to be very deliberate when you’re putting in input, relative to what you would do with a stick,” he continued. “Because you know, when you’re flying an airplane for example, if I push the stick forward it’s going to go down. I actually have to make a concerted effort to do that with the touchscreen, if that makes sense.”

“I don’t think I’m going too far out on a limb to say that the right answer for all flying is not to switch to a touchscreen, necessarily,” said Behnke. “But for the task that we have and to keep ourselves safe flying close to the ISS, the touchscreen is gonna provide us that capability just fine.”

Hurley pointed out that one major advantage is that the controls and readouts are all in the same place: “You’re seeing the docking target, for example, right in the same place you’re looking to fly the vehicle. So it is a little bit different way of doing it, but the design in general has worked out very well.”

There’s only so much one can learn in a simulator, though, and this first crewed flight is still very much a test, the feedback from which will inform the next iteration of the capsule. It’s easier, after all, to push a software update than to rewire the pots of 20 different knobs in a system that goes back decades.

“We specifically, as part of this test flight, designed in some time in the preflight phase, as well as closer to space station, so we can test out actual manual flying capability of the vehicle,” Hurley explained. “Just to see and verify that it handles the way we expect it to, and the way the simulator shows it to fly. It’s a prudent part of our flight test just like anything else, in case the eventuality happened that a future crew needed to take over manually and fly the spacecraft. So we’re just doing our part, to kinda test out all the different capabilities of the Crew Dragon.”

We are sure to hear more about the version of Crew Dragon that will be flying later this month if everything goes according to plan. In the meantime I have asked both SpaceX and NASA for more information on the control scheme and its development.

Let’s block ads! (Why?)

728x90x4

Source link

Continue Reading

Science

Marine plankton could act as alert in mass extinction event: UVic researcher – Saanich News

Published

 on


A University of Victoria micropaleontologist found that marine plankton may act as an early alert system before a mass extinction occurs.

With help from collaborators at the University of Bristol and Harvard, Andy Fraass’ newest paper in the Nature journal shows that after an analysis of fossil records showed that plankton community structures change before a mass extinction event.

“One of the major findings of the paper was how communities respond to climate events in the past depends on the previous climate,” Fraass said in a news release. “That means that we need to spend a lot more effort understanding recent communities, prior to industrialization. We need to work out what community structure looked like before human-caused climate change, and what has happened since, to do a better job at predicting what will happen in the future.”

300x250x1

According to the release, the fossil record is the most complete and extensive archive of biological changes available to science and by applying advanced computational analyses to the archive, researchers were able to detail the global community structure of the oceans dating back millions of years.

A key finding of the study was that during the “early eocene climatic optimum,” a geological era with sustained high global temperatures equivalent to today’s worst case global warming scenarios, marine plankton communities moved to higher latitudes and only the most specialized plankton remained near the equator, suggesting that the tropical temperatures prevented higher amounts of biodiversity.

“Considering that three billion people live in the tropics, the lack of biodiversity at higher temperatures is not great news,” paper co-leader Adam Woodhouse said in the release.

Next, the team plans to apply similar research methods to other marine plankton groups.

Read More: Global study, UVic researcher analyze how mammals responded during pandemic

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

The largest marine reptile ever could match blue whales in size – Ars Technica

Published

 on


Blue whales have been considered the largest creatures to ever live on Earth. With a maximum length of nearly 30 meters and weighing nearly 200 tons, they are the all-time undisputed heavyweight champions of the animal kingdom.

Now, digging on a beach in Somerset, UK, a team of British paleontologists found the remains of an ichthyosaur, a marine reptile that could give the whales some competition. “It is quite remarkable to think that gigantic, blue-whale-sized ichthyosaurs were swimming in the oceans around what was the UK during the Triassic Period,” said Dean Lomax, a paleontologist at the University of Manchester who led the study.

300x250x1

Giant jawbones

Ichthyosaurs were found in the seas through much of the Mesozoic era, appearing as early as 250 million years ago. They had four limbs that looked like paddles, vertical tail fins that extended downward in most species, and generally looked like large, reptilian dolphins with elongated narrow jaws lined with teeth. And some of them were really huge. The largest ichthyosaur skeleton so far was found in British Columbia, Canada, measured 21 meters, and belonged to a particularly massive ichthyosaur called Shonisaurus sikanniensis. But it seems they could get even larger than that.

What Lomax’s team found in Somerset was a surangular, a long, curved bone that all reptiles have at the top of the lower jaw, behind the teeth. The bone measured 2.3 meters—compared to the surangular found in the Shonisaurus sikanniensis skeleton, it was 25 percent larger. Using simple scaling and assuming the same body proportions, Lomax’s team estimated the size of this newly found ichthyosaur at somewhere between 22 and 26 meters, which would make it the largest marine reptile ever. But there was one more thing.

Examining the surangular, the team did not find signs of the external fundamental system (EFS), which is a band of tissue present in the outermost cortex of the bone. Its formation marks a slowdown in bone growth, indicating skeletal maturity. In other words, the giant ichthyosaur was most likely young and still growing when it died.

Correcting the past

In 1846, five large bones were found at the Aust Cliff near Bristol in southwestern England. Dug out from the upper Triassic rock formation, they were dubbed “dinosaurian limb bone shafts” and were exhibited in the Bristol Museum, where one of them was destroyed by bombing during World War II.

But in 2005, Peter M. Galton, a British paleontologist then working at the University of Bridgeport, noticed something strange in one of the remaining Aust Cliff bones. He described it as an “unusual foramen” and suggested it was a nutrient passage. Later studies generally kept attributing those bones to dinosaurs but pointed out things like an unusual microstructure that was difficult to explain.

According to Lomax, all this confusion was because the Aust Cliff bones did not belong to dinosaurs and were not parts of limbs. He pointed out that the nutrient foramen morphology, shape, and microstructure matched with the ichthyosaur’s bone found in Somerset. The difference was that the EFS—the mark of mature bones—was present on the Aust Cliff bones. If Lomax is correct and they really were parts of ichthyosaurs’ surangular, they belonged to a grown individual.

And using the same scaling technique applied to the Somerset surangular, Lomax estimated this grown individual to be over 30 meters long—slightly larger than the biggest confirmed blue whale.

Looming extinction

“Late Triassic ichthyosaurs likely reached the known biological limits of vertebrates in terms of size. So much about these giants is still shrouded by mystery, but one fossil at a time, we will be able to unravel their secrets,” said Marcello Perillo, a member of the Lomax team responsible for examining the internal structure of the bones.

This mystery beast didn’t last long, though. The surangular bone found in Somerset was buried just beneath a layer full of seismite and tsunamite rocks that indicate the onset of the end-Triassic mass extinction event, one of the five mass extinctions in Earth’s history. The Ichthyotian severnensis, as Lomax and his team named the species, probably managed to reach an unbelievable size but was wiped out soon after.

The end-Triassic mass extinction was not the end of all ichthyosaurs, though. They survived but never reached similar sizes again. They faced competition from plesiosaurs and sharks that were more agile and swam much faster, and they likely competed for the same habitats and food sources. The last known ichthyosaurs went extinct roughly 90 million years ago.

PLOS ONE, 2024.  DOI: 10.1371/journal.pone.0300289

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Jeremy Hansen – The Canadian Encyclopedia

Published

 on


Early Life and Education

Jeremy Hansen grew up on a farm near the community of Ailsa Craig, Ontario, where he attended elementary school. His family moved to Ingersoll,
Ontario, where he attended Ingersoll District Collegiate Institute. At age 12 he joined the 614 Royal Canadian Air Cadet Squadron in London, Ontario. At 16 he earned his Air Cadet
glider pilot wings and at 17 he earned his private pilot licence and wings. After graduating from high school and Air Cadets, Hansen was accepted for officer training in the Canadian Armed Forces (CAF). He was trained at Chilliwack, British Columbia, and the Royal Military College at Saint-Jean-sur-Richelieu,
Quebec. Hansen then enrolled in the Royal Military College of Canada in Kingston,
Ontario. In 1999, he completed a Bachelor of Science in space science with First Class Honours and was a Top Air Force Graduate from the Royal Military College. In 2000, he completed his Master of Science in physics with a focus on wide field of view satellite tracking.   

CAF Pilot

In 2003, Jeremy Hansen completed training as a CF-18 fighter pilot with the 410 Tactical Fighter Operational Training Squadron at Cold Lake, Alberta.
From 2004 to 2009, he served by flying CF-18s with the 441 Tactical Fighter Squadron and the 409 Tactical Fighter Squadron. He also flew as Combat Operations Officer at 4 Wing Cold Lake. Hansen’s responsibilities included NORAD operations effectiveness,
Arctic flying operations and deployed exercises. He was promoted to the rank of colonel in 2017. (See also Royal Canadian Air Force.)

Career as an Astronaut

In May 2009, Jeremy Hansen and David Saint-Jacques were chosen out of 5,351 applicants in the Canadian Space Agency’s
(CSA) third Canadian Astronaut Recruitment Campaign. He graduated from Astronaut Candidate Training in 2011 and began working at the Mission Control Center in Houston, Texas, as capsule communicator (capcom, the person in Mission Control who speaks directly
to the astronauts in space.

300x250x1
David Saint-Jacques (left) and Jeremy Hansen (right) during a robotics familiarization session, 25 July 2009.

As a CSA astronaut, Hansen continues to develop his skills. In 2013, he underwent training in the High Arctic and learned how to conduct geological fieldwork (see Arctic Archipelago;
Geology). That same year, he participated in the European Space Agency’s CAVES program in Sardinia, Italy. In that human performance experiment Hansen lived underground for six days.
In 2014, Hansen was a member of the crew of NASA Extreme Environment Mission Operations (NEEMO) 19. He spent seven days off Key Largo, Florida, living in the Aquarius habitat on the ocean floor, which is used to simulate conditions of the International
Space Station and different gravity fields. In 2017, Hansen became the first Canadian to lead a NASA astronaut class, in which he trained astronaut candidates from Canada and the United States.  

Did you know?

Hansen has been instrumental in encouraging young people to become part of the STEM (Science, Technology,
Engineering, Mathematics) workforce with the aim of encouraging future generations of space explorers.
His inspirational work in Canada includes flying a historical “Hawk One” F-86 Sabre jet.

Artemis II

In April 2023, Hansen was chosen along with Americans Christina Koch, Victor Glover and Reid Wiseman to crew NASA’s Artemis II mission to the moon. The mission, scheduled for no earlier
than September 2025 after a delay due to technical problems, marks NASA’s first manned moon voyage since Apollo 17 in 1972. The Artemis II astronauts will not land on the lunar
surface, but will orbit the moon in an Orion spacecraft. They will conduct tests in preparation for future manned moon landings, the establishment of an orbiting space station called Lunar Gateway, or Gateway, and a base on the moon’s surface where astronauts
can live and work for extended periods. The path taken by Orion will carry the astronauts farther from Earth than any humans have previously travelled. Hansen’s participation in Artemis II is a direct result of Canada’s contribution of Canadarm3
to Lunar Gateway. (See also Canadarm; Canadian Space Agency.)

“Being part of the Artemis II crew is both exciting and humbling. I’m excited to leverage my experience, training and knowledge to take on this challenging mission on behalf of Canada. I’m humbled by the incredible contributions and hard work of so many
Canadians that have made this opportunity a reality. I am proud and honoured to represent my country on this historic mission.” – Jeremy Hansen (Canadian Space Agency, 2023)

Did you know?

On his Artemis II trip, Hansen will wear an Indigenous-designed mission patch created for him by Anishinaabe artist Henry Guimond.

[embedded content]

Honours and Awards

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Trending