Connect with us

Science

Tom Landecker awarded the WG Schneider Medal – National Research Council Canada – Conseil national de recherches Canada

Published

 on


Dr. Tom Landecker, Researcher Emeritus, has recently been awarded the W.G. Schneider Medal–the highest expression of recognition for achievement at the National Research Council of Canada (NRC). This award recognizes an employee who has made an outstanding contribution to the NRC above and beyond the expectations of their job duties and who exemplifies the NRC’s values.

Dr. Landecker has been a major force in, and inspiration, to Canadian astronomy for 5 decades. With expertise in both engineering and astronomy, he has pushed technological improvement in the service of science, working with academic partners to develop novel telescopes at the NRC’s Dominion Radio Astrophysical Observatory (DRAO) which have enabled science, including some of the world’s foremost research on fast radio bursts (FRBs) here in Canada.

He is a publishing powerhouse, authoring 150 refereed journal articles in science and engineering. He celebrated his 80th birthday with 9 new papers in 2021 alone.

He is highly respected among his peers in astronomy, not just for his expertise, but also for his enthusiasm, leadership and mentorship, inspiring and encouraging the next generation of Canadian astronomers.

A legacy of telescopes and the discovery they enable

Dr. Landecker first arrived at the DRAO as a postdoctoral fellow, now a part of the NRC Herzberg Astronomy and Astrophysics Research Centre, in 1969.

In that role, he helped build the Synthesis Telescope–a unique imaging radio telescope that is open to all Canadian and international astronomers. Later, as Director of the DRAO, Dr. Landecker used the Synthesis Telescope to lead the team carrying out one of the largest surveys of the interstellar medium (dust and gas), the Canadian Galactic Plane Survey (CGPS, 1995-2014). He developed techniques for wide-field polarization imaging that have become standard in the field. The project produced over 400 refereed publications and continues to generate about 20 more each year. This success spawned an international era of wide-field radio surveys.

Following this, Dr. Landecker started the Global Magneto-Ionic Medium Survey (GMIMS), mapping out the polarization of the entire radio sky and making this available to all astronomers via the NRC’s Canadian Astronomy Data Centre. The GMIMS consortium comprises 14 Canadian and 22 international scientists, including many experts in magnetic field studies.

All of Dr. Landecker’s projects have developed new technical capabilities to support science that previously was simply not possible, from telescope upgrades and new algorithms for the CGPS, to new feed concepts and on-site demonstrations leading to the success of the Canadian Hydrogen Intensity Mapping Experiment (CHIME).

Supporting university collaboration

Dr. Landecker has also played an instrumental role in the Canadian Hydrogen Intensity Mapping Experiment (CHIME), sited at the DRAO. He advised university partners on the development of CHIME’s unprecedented “half-pipe” design, to realize a valuable new tool for cosmology and the hunt for FRBs. CHIME has been spectacularly successful, receiving the Governor General’s Award for Innovation (2020) and the Berkeley Prize of the American Astronomical Society (2022). A CHIME result on FRBs was lauded among the top scientific results of 2020 by both Nature and Science magazines.

“Tom has been absolutely crucial to the success of CHIME, on account of his deep knowledge of radio instrumentation, his amazing expertise on Galactic emission, his enthusiastic appreciation and detailed knowledge of a very broad range of research topics, and his very deep respect for his colleagues.”

Mark Halpern, University of British Columbia and Principal Investigator, CHIME

“Tom has been a major driving force behind Canadian radio astronomy for many decades… Tom has been absolutely essential to the development, construction, implementation, testing, calibration and scientific exploitation of CHIME.”

Victoria Kaspi, McGill University and Principal Investigator, CHIME/FRB

Mentorship

Photo of Dr. Tom Landecker with students

Dr. Tom Landecker’s enthusiasm, technical expertise, scientific focus and hands-on work ethic have directly inspired generations of students and postdoctoral fellows. He is an adjunct professor at the University of Calgary and the University of British Columbia, Okanagan. He has supervised 17 graduate students at Canadian universities, and worked closely with many more, acting in particular as a strong advocate and mentor for women in engineering and science.

“Tom Landecker has been my mentor since I was in graduate school… In a world filled with competitive agents, he is the most collaborative and inclusive person I know. My graduate students and I have benefited immensely from his knowledge and wisdom; I am eternally grateful for his support and friendship.”

Professor Jo-Anne Brown, University of Calgary

“Through mentorship, Tom has encouraged female students and postdocs, myself included, into the traditionally male-dominated fields of astronomy and engineering, always with a genuine trust in their abilities and their potential to contribute… His way of communicating empowers me to learn new concepts and fill in gaps in my understanding while feeling that I am part of a productive conversation.”

Anna Ordog, current Postdoctoral Fellow, University of British Columbia-Okanagan

Congratulations Tom!

Adblock test (Why?)



Source link

Continue Reading

Science

NASA will launch the CAPSTONE mission on Monday, June 27 – electriccitymagazine.ca

Published

 on


Rocket Lab's Electron rocket sits atop the launch pad at Launch Complex 1 in New Zealand for a rehearsal before the CAPSTONE launch.

A small satellite is preparing to pave the way for something much greater: a fully grown lunar space station. NASA’s CAPSTONE satellite is scheduled to launch on Monday and then travel to a unique lunar orbit on the Pathfinder mission Artemis programwhich seeks to return humans to the moon later this decade.

capstone He rides aboard Rocket Lab’s Electron rocket, which will take off from the private company’s Launch Complex 1 in Mahia, New Zealand. Rocket Lab made headlines in May using a helicopter to catch a falling booster missile. CAPSTONE is scheduled to launch at 6 AM ET on June 27 with live coverage starting an hour earlier. You can watch the event in the agency website or ApplicationOr, you can watch it on the live stream below.

NASA Live: The official broadcast of NASA TV

About a week after the CAPSTONE mission, the probe’s flight will be available through NASA Eyes on the solar system Interactive 3D visualization of data in real time.

The Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment (CAPSTONE) mission will send a microwave-sized satellite into near corona orbit (NRHO) around the moon. The satellite will be the first to sail its way around this unique lunar orbit, testing it for the planned date Moon Gatea small space station intended to allow a permanent human presence on the moon.

NRHO is special in that it is where the gravitational force of the Moon and Earth interact. This orbit would theoretically keep the spacecraft in a “beautiful gravitational spot” in a near-stable orbit around the Moon, according to to NASA. Therefore NRHO is ideal because it will require less fuel than conventional orbits and will allow the proposed lunar space station to maintain a stable line of communication with Earth. But before NASA builds its gateway into this highly elliptical orbit, the space agency will use CAPSTONE — which is owned and operated by Colorado-based Advanced Space — to test its orbital models.

Artist’s concept of CAPSTONE.
GIF: NASA/Daniel Rutter

Six days after launch from Earth, the upper stage of the Electron rocket will launch the CAPSTONE satellite on its journey to the Moon. The 55-pound (25-kilogram) cube vehicle will perform the rest of the four-month solo journey. Once on the moon, CAPSTONE will test the orbital dynamics of its orbit for about six months. The satellite will also be used to test spacecraft-to-spacecraft navigation technology and unidirectional range capabilities that could eventually reduce the need for future spacecraft to communicate with mission controllers on Earth and wait for signals from other spacecraft to relay.

NASA is systematically putting together the pieces for the agency’s planned return to the Moon. The The fourth and final rehearsal for the space agency’s Space Launch System (SLS) went wellpaving the way for a possible launch in late August.

more: This small satellite linked to the moon can make a path to the lunar space station

“Reader. Infuriatingly humble coffee enthusiast. Future teen idol. Tv nerd. Explorer. Organizer. Twitter aficionado. Evil music fanatic.”

Adblock test (Why?)



Source link

Continue Reading

Science

Astronaut view of New Zealand's North Island – Earth.com

Published

 on


Today’s Image of the Day from NASA Earth Observatory features the North Island of New Zealand. The photo was captured as the International Space Station (ISS) approached the southernmost extent of its prograde 51.6 degree orbit. 

From this vantage point – and with the perfect weather conditions – astronauts can get a clear view of the North Island of New Zealand, according  to ESA.

“Looking towards the northwest, the astronaut photographer captured the mottled-green island that separates the Tasman Sea from the South Pacific Ocean. On the other side of Cook Strait, South Island peeks out from beneath the cloud cover,” reports ESA.

“Seven bays surround the North Island and define its distinctive shape. The inland landscape includes grasslands (lighter green areas), forests (darker green areas), volcanic plateaus, and mountain ranges formed from sedimentary rocks.”

Lake Taupō, located in the center of the North Island, is a crater lake inside a caldera formed by a supervolcanic eruption. The lake borders the active volcano Mount Ruapehu, which has the highest peak in New Zealand. 

“The volcanic nature of the island arises from its location on the tectonic plate boundary between the Indo-Australian and Pacific Plates,” says ESA. “This plate boundary is part of the vast Pacific Ring of Fire, and leads to significant geothermal activity and earthquakes in the region. Additional volcanoes, including Egmont Volcano (Mount Taranaki), also dot the North Island landscape.”

Image Credit: NASA Earth Observatory

By Chrissy Sexton, Earth.com Staff Writer

Adblock test (Why?)



Source link

Continue Reading

Science

Artemis 1 moon mission could launch as soon as late August – Space.com

Published

 on


NASA officials have declared the Artemis 1 moon rocket’s most recent “wet dress rehearsal” a success and are hopeful the mission can get off the ground as soon as late August.

The Artemis 1 stack — a Space Launch System (SLS) rocket topped by an Orion capsule — is scheduled to roll back to the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center (KSC) in Florida on July 1, where the massive vehicle will undergo repairs and preparations for its coming launch. 

Artemis 1, the first launch for the SLS, will send an uncrewed Orion on a roughly month-long mission around the moon. The mission has experienced several delays, and most recently the rocket’s certification to fly has been held up by incomplete fueling tests — a key part of the wet dress rehearsal, a three-day series of trials designed to gauge a new vehicle’s readiness for flight. 

Related: NASA’s Artemis 1 moon mission explained in photos 

The Artemis 1 stack first rolled from the VAB to KSC’s Pad 39B in mid-March, to prep for a wet dress rehearsal that began on April 1. But three separate attempts to fill the SLS with cryogenic propellants during that effort failed, sending the stack back to the VAB for repairs on April 25. The most recent wet dress try, which wrapped up on Monday (June 20), didn’t go perfectly, but NASA has deemed it good enough to proceed with preparations for launch.

Operators were able to fully fuel SLS for the first time, bringing the launch simulation much further along than any of the attempts in April. A leak from the core stage’s engine cooling system “umbilical” line was detected during Monday’s fueling test, but mission managers determined that the deviation didn’t pose a safety risk and continued with the simulation’s terminal count. That ended up being the right decision, Artemis 1 team members said.  

Mission operators were able to run a “mask” for the leak in the ground launch sequencer software, which permitted computers in mission control to acknowledge the malfunction without flagging it as a reason to halt the countdown, according to Phil Weber, senior technical integration manager at KSC. Weber joined other agency officials on a press call Friday (June 24) to discuss the plans for Artemis 1 now that the wet dress is in the rear view mirror.

The software mask allowed the count to continue through to the handoff from the mission control computers to the automated launch sequencer (ALS) aboard the SLS at T-33 seconds, which ultimately terminated the count at T-29 seconds. 

“[ALS] was really the prize for us for the day,” Weber said during Friday’s call. “We expected … it was going to break us out [of the countdown] because the ALS looks for that same measurement, and we don’t have the capability to mask it onboard.” 

It was unclear immediately following the recent wet dress if another one would be required, but mission team members later put that question to rest.

“At this point, we’ve determined that we have successfully completed the evaluations and required work we intended to complete for the dress rehearsal,” Tom Whitmeyer, deputy associate administrator for Common Exploration Systems at NASA headquarters, said on Friday’s call. He added that NASA teams now have the “go ahead to proceed” with preparations for Artemis 1’s launch.

Before it can be rolled back to the VAB, however, the stack will undergo further maintenance at Pad 39B, including repairs to the quick-disconnect component on the aft SLS umbilical, which was responsible for Monday’s hydrogen leak. 

There’s also one more test technicians need to perform at the pad. Hot-firing the hydraulic power units (HBUs), part of the SLS’ solid rocket boosters, was originally part of the wet dress countdown but was omitted when the countdown was aborted. Those tests will be completed by Saturday (June 25), according to Lanham. Following the hot-fire tests, operators will then spend the weekend offloading the HBUs’ hydrazine fuel.

Once back in the VAB, NASA officials estimate it’ll take six to eight weeks of work to get Artemis 1 ready to roll back to Pad 39B for an actual liftoff. Cliff Lanham, senior vehicle operations manager at KSC, outlined some of the planned maintenance on Friday’s call. 

Related: NASA’s Artemis program of lunar exploration

Related stories:

Among other tasks, technicians will perform standard vehicle inspections, hydrogen leak repairs, “late-stow” for the payloads flying on Orion, and software loads to the SLS core stage and upper stage. They will also install flight batteries.

“Ultimately, we want to get to our flight termination system testing,” Lanham said. “Once that’s complete, we’ll be able to perform our final inspections in all the volumes of the vehicle and do our closeouts.”

After that work is complete, the Artemis 1 stack will roll out from the VAB once again, making the eight to 11-hour crawl back to Pad 39B on July 1. Whitmeyer said on Friday that the late-August launch window for Artemis 1, which opens on Aug. 23 and lasts for one week, is “still on the table.”

Follow us on Twitter @Spacedotcom (opens in new tab) or on Facebook (opens in new tab).  

Adblock test (Why?)



Source link

Continue Reading

Trending