Connect with us

Science

Venus’ Surface Tectonics is More Like Pack ice on Earth – Universe Today

Published

 on


Planets move in mysterious ways.  Or at least their surfaces do.  Earth famously has a system of tectonic plates that drives the movement of its crust.  Those plate tectonics are ultimately driven by the flow of material in the mantle – the layer directly below the crust.  Now, scientists have found a slightly different deformation mechanic on our nearest sister planet – Venus.

The research, carried out by Dr. Paul Byrne of North Carolina State University and his colleagues, used data from NASA’s Magellan spacecraft which visited Venus back in the 90s.  While orbiting the planet, the probe collected a radar map of its surface, which is obscured by a thick atmosphere at wavelengths visible to the human eye.

One of the most famous pictures generated from Magellan’s trip to Venus was this one of Maat Mons. This NASA Magellan image was released on April 22, 1992.
Credit – NASA

In part of that radar map, the researchers noticed something interesting – a series of blocks where the crust of the planet (known as the “lithosphere”) looked like it had moved.  This finding flew in the face of the convention wisdom of Venus, which held that Venus’ lithosphere was immobile.  

As any good scientist knows, if the data disproves an old theory, a new theory is required.  So the team set out modeling the deformation to see if they could figure out what might have caused it.  The answer appears to be that he deformation is caused by the slow movement of the planet’s interior.  

[embedded content]
UT video discussing the surface of Venus.

What’s more, the researchers also think the process that caused these deformations might still be ongoing.  Venus famously has active volcanoes that are another way its surface deforms itself.  These volcanoes form lava plains, which are relatively young in geological terms.  Some of those lava plains had evidence of the deformation in Magellan’s data, implying that, even after having been recently resurfaced due to volcanic activity, Venus’ lithosphere is deformed again by its active interior.

That active interior causes deformations that interact similarly to ice sheets that are broken up and jostled on top of each other.  Sometimes those create even small ice sheets or jagged patterns, and the patterns that result from that jostling look similar to what the researcher saw on the lava plains of Venus.

[embedded content]
UT video discussing what caused Venus to end up in the hellish state it is in.

Luckily they won’t be the last ones to look – a group of three new missions will be visiting our sister planet in the coming decades.  They will sport new and improved sensors, including one (VERITAS) whose primary mission is to accurately map the planet’s surface.  It will undoubtedly see the formations that Magellan found, but maybe higher resolution data will lead yet more insights.

Learn More –
NCSU – ‘Pack Ice’ Tectonics Reveal Venus’ Geological Secrets
PNAS – A globally fragmented and mobile lithosphere on Venus
BBC – Signs of geological activity found on Venus
Technology Review – Scientists might have spotted tectonic activity inside Venus

Lead Image –
Picture of one of the large blocks in Venus’ low-lands that they found, known as Nüwa Campus
Credit – Paul K. Byrne and Sean C. Solomon

Adblock test (Why?)



Source link

Continue Reading

Science

Russian lab module docks with space station after 8-day trip – Vancouver Is Awesome

Published

 on


MOSCOW — A newly arrived Russian science lab briefly knocked the International Space Station out of position Thursday when it accidentally fired its thrusters.

For 47 minutes, the space station lost control of its orientation when the firing occurred a few hours after docking, pushing the orbiting complex from its normal configuration. The station’s position is key for getting power from solar panels and or communications. Communications with ground controllers also blipped out twice for a few minutes.

Flight controllers regained control using thrusters on other Russian components at the station to right the ship, and it is now stable and safe, NASA said.

“We haven’t noticed any damage,” space station program manager Joel Montalbano said in a late afternoon press conference. “There was no immediate danger at anytime to the crew.”

Montalbano said the crew didn’t really feel any movement or any shaking. NASA said the station moved 45 degrees out of attitude, about one-eighth of a complete circle. The complex was never spinning, NASA spokesman Bob Jacobs said.

NASA’s human spaceflight chief Kathy Lueders called it “a pretty exciting hour.”

The incident caused NASA to postpone a repeat test flight for Boeing’s crew capsule that had been set for Friday afternoon from Florida. It will be Boeing’s second attempt to reach the 250-mile-high station before putting astronauts on board; software problems botched the first test.

Russia’s long-delayed 22-ton (20-metric-ton) lab called Nauka arrived earlier Thursday, eight days after it launched from the Russian launch facility in Baikonur, Kazakhstan.

The launch of Nauka, which will provide more room for scientific experiments and space for the crew, had been repeatedly delayed because of technical problems. It was initially scheduled to go up in 2007.

In 2013, experts found contamination in its fuel system, resulting in a long and costly replacement. Other Nauka systems also underwent modernization or repairs.

Stretching 43 feet (13 meters) long, Nauka became the first new compartment for the Russian segment of the outpost since 2010. On Monday, one of the older Russian units, the Pirs spacewalking compartment, undocked from the station to free up room for the new lab.

Nauka will require many maneuvers, including up to 11 spacewalks beginning in early September, to prepare it for operation.

The space station is currently operated by NASA astronauts Mark Vande Hei, Shane Kimbrough and Megan McArthur; Oleg Novitsky and Pyotr Dubrov of Russia’s Roscosmos space corporation; Japan Aerospace Exploration Agency astronaut Akihiko Hoshide and European Space Agency astronaut Thomas Pesquet.

In 1998, Russia launched the station’s first compartment, Zarya, which was followed in 2000 by another big piece, Zvezda, and three smaller modules in the following years. The last of them, Rassvet, arrived at the station in 2010.

Russian space officials downplayed the incident with Dmitry Rogozin, head of Roscosmos, tweeting: “All in order at the ISS. The crew is resting, which is what I advise you to do as well.”

Seth Borenstein, The Associated Press




Adblock test (Why?)



Source link

Continue Reading

Science

There is contact! -Russia's new Nauka space module docks wit… – MENAFN.COM

Published

 on


(MENAFN – The Peninsula)
Reuters

MOSCOW: Russia upgraded its capabilities on the International Space Station on Thursday after its new Nauka module, set to serve as a research lab, storage unit and airlock, successfully docked with it after a nervy journey from Earth.

A live broadcast from Russia’s space agency, Roscosmos, showed the module, a multipurpose laboratory named after the Russian word for ‘science’, docking with the ISS at 1329 GMT, a few minutes later than scheduled.

“According to telemetry data and reports from the ISS crew, the onboard systems of the station and the Nauka module are operating normally,” Roscosmos said in a statement.

“There is contact!!!” Dmitry Rogozin, the head of Roscosmos, wrote on Twitter moments after the docking.

Since it launch last week from Kazakhstan’s Baikonur Cosmodrome, the module had suffered a series of glitches that had raised concerns about whether the docking procedure would go smoothly.

Thursday’s development suggests Russia is interested in maintaining the ISS despite previous comments from Rogozin who last month suggested Moscow would withdraw from it in 2025 unless Washington lifted sanctions on the space sector that he said were hampering Russian satellite launches.

Launched in 1998, the ISS is a multinational project and comprises two segments, a Russian one and another one used by the United States and other space agencies.

“After its commissioning, the Russian segment will receive additional room for arranging workplaces, storing cargo and housing water and oxygen regeneration equipment,” Roscosmos said its statement.

MENAFN29072021000063011010ID1102537170

Legal Disclaimer:
MENAFN provides the information “as is” without warranty of any kind. We do not accept any responsibility or liability for the accuracy, content, images, videos, licenses, completeness, legality, or reliability of the information contained in this article. If you have any complaints or copyright issues related to this article, kindly contact the provider above.

Adblock test (Why?)



Source link

Continue Reading

Science

Halifax researcher part of team behind black hole discovery that proves Einstein right – Global News

Published

 on


A researcher at Saint Mary’s University in Halifax was part of a team of scientists that observed light coming from behind a black hole for the very first time, confirming a prediction from famous physicist Albert Einstein’s theory of general relativity.

While scientists have seen X-ray emissions around black holes before, it’s the first time light has been spotted behind a black hole – and the new discovery could lead to a better understanding of what’s still largely considered to be an astronomical mystery.

Luigi Gallo, a professor of astronomy at Saint Mary’s University who’s been studying black holes for 20 years, worked on the data analysis and interpretation for this research project, led by Stanford University astrophysicist Dan Wilkins.

“They’re my favourite objects, but I think I’m biased a bit,” Gallo said of black holes. “It’s the most extreme object in space, right? We don’t know a lot about them.”

Read more:
Nova Scotia professor studies light at the edge of supermassive black holes

Gallo’s research focuses on supermassive black holes – the regions in space where gravity is so strong that not even light can escape. Supermassive black holes are 10 million times larger than the sun.

Because of their very nature, black holes themselves can’t be seen. Scientists are only able to observe the objects around them.

As materials in space fall into a black hole, they form what’s called an “accretion disk,” where they spiral around before falling into the black hole.


The flares echo off of the gas falling into the black hole, and as the flares were subsiding, short flashes of X-rays were seen corresponding to the reflection of the flares from the far side of the disk, bent around the black hole by its strong gravitational field.


ESA/S. Poletti

On top of a black hole is a primary light source known as a “corona,” which illuminates the material. When the light shines onto the accretion disk, it bounces off and creates X-ray emissions or flares.

“It’s not exactly like a reflection in a mirror. What happens is that light comes back with different colours and it comes back at different times,” Gallo explained.

Proving Einstein right

What the five-person research team observed was a big flare coming from a supermassive black hole in a galaxy 800 million light-years away known as I Zwicky 1, using two space-based X-ray telescopes from NASA and the European Space Agency.

Shortly after seeing the big flare, Gallo said they observed a smaller flare in a different colour – an “echo” of the first flare.

“We were able to interpret that as light coming from the other side of the black hole,” said Gallo. “Which is really kind of cool, we haven’t ever been able to isolate exactly where light is coming from on the accretion disk … but in this instance, we’re actually able to say, ‘Oh, this light is coming from behind the black hole.’”


Click to play video: 'Shedding light on a black hole'



3:34
Shedding light on a black hole


Shedding light on a black hole – Mar 26, 2021

That echo could be seen because the black hole was warping space by bending light around itself. Thus, Einstein’s century-old prediction was proven right, Gallo said.

“This is basically confirming how the space-time around a supermassive black hole is shaped,” he said.

“That’s why we can see light coming from behind the black hole, it’s because it’s taken this curved path around the black hole and landing now on us, so that we can see it … Because space is bent, which is a prediction of general relativity, we’re able to see what’s behind the black hole.”

This research, published earlier this week in Nature, opens the door a little further for scientists studying black holes.

Read more:
Astronomers observe collision of 2 black holes — 7 billion years later

Gallo said it will allow them to eventually draw a 3D picture of what the region around the supermassive black hole looks like. As well, he said they will continue to study “coronas” to better understand them, which was actually the driving motivation behind this discovery.

Gallo took note of the “incremental” nature of science and said there are decades of other discoveries that led them to this point.

“The telescopes that we work on get better and better with time, and the techniques that we develop get better and better,” he said.

“The discovery made today … is based on decades of work of many, many other scientists that brought us here.”

Read more:
New ‘black neutron star’ stuns astronomers with its spectacular death

He added that it’s important to study black holes, since their formation and evolution is “tightly linked” to the formation and evolution of galaxies.

“Galaxies are stars, and then the stars are forming planets, and planets are where we are,” he said. “All this is kind of tied in understanding the origins of where we come from.

“So it is an important field of research, but it’s fun. So it’s kind of easy for me to justify doing this kind of work.”

— With a file from The Canadian Press

© 2021 Global News, a division of Corus Entertainment Inc.

Adblock test (Why?)



Source link

Continue Reading

Trending