Connect with us


Webb Space Telescope Detects Carbon Dioxide in the Atmosphere of an Exoplanet – SciTechDaily



This illustration shows what exoplanet WASP-39 b could look like, based on the current understanding of the planet.
WASP-39 b is a hot, puffy gas giant with a mass 0.28 times Jupiter (0.94 times Saturn) and a diameter 1.3 times greater than Jupiter, orbiting just 0.0486 astronomical units (4,500,000 miles) from its star. The star, WASP-39, is fractionally smaller and less massive than the Sun. Because it is so close to its star, WASP-39 b is very hot and is likely to be tidally locked, with one side facing the star at all times. Data collected by Webb’s Near-Infrared Spectrograph (NIRSpec) show unambiguous evidence for carbon dioxide in the atmosphere, while previous observations from NASA’s Hubble and Spitzer space telescopes, as well as other telescopes, indicate the presence of water vapor, sodium, and potassium. The planet probably has clouds and some form of weather, but it may not have atmospheric bands like those of Jupiter and Saturn. Credit: NASA, ESA, CSA, Joseph Olmsted (STScI)

NASA’s Webb ushers in a new era of exoplanet science with the first unequivocal detection of carbon dioxide in a planetary atmosphere outside our solar system.

After years of preparation and anticipation, <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

An exoplanet (or extrasolar planet) is a planet that is located outside our Solar System, orbiting around a star other than the Sun. The first suspected scientific detection of an exoplanet occurred in 1988, with the first confirmation of detection coming in 1992.

” data-gt-translate-attributes=”["attribute":"data-cmtooltip", "format":"html"]”>exoplanet scientists are overjoyed. <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

Established in 1958, the National Aeronautics and Space Administration (NASA) is an independent agency of the United States Federal Government that succeeded the National Advisory Committee for Aeronautics (NACA). It is responsible for the civilian space program, as well as aeronautics and aerospace research. Its vision is &quot;To discover and expand knowledge for the benefit of humanity.&quot; Its core values are &quot;safety, integrity, teamwork, excellence, and inclusion.&quot;

” data-gt-translate-attributes=”["attribute":"data-cmtooltip", "format":"html"]”>NASA’s <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

James Webb Space Telescope
The James Webb Space Telescope (JWST or Webb) is an orbiting infrared observatory that will complement and extend the discoveries of the Hubble Space Telescope. It covers longer wavelengths of light, with greatly improved sensitivity, allowing it to see inside dust clouds where stars and planetary systems are forming today as well as looking further back in time to observe the first galaxies that formed in the early universe.

” data-gt-translate-attributes=”["attribute":"data-cmtooltip", "format":"html"]”>James Webb Space Telescope has captured an astonishingly detailed rainbow of near-infrared starlight filtered through the atmosphere of a hot gas giant exoplanet 700 light-years away. The transmission spectrum of exoplanet WASP-39 b, based on a single set of measurements made using Webb’s Near-Infrared Spectrograph and analyzed by dozens of researchers, represents a hat trick of firsts: Webb’s first official scientific observation of an exoplanet; the first detailed exoplanet spectrum covering this range of near-infrared colors; and the first indisputable evidence for carbon dioxide in the atmosphere of a planet orbiting a distant star. The results are indicative of Webb’s ability to spot key molecules like carbon dioxide in a wide variety of exoplanets – including smaller, cooler, rocky planets. This shows it is capable of providing insights into the composition, formation, and evolution of planets across the galaxy.

[embedded content]
Watch this Space Sparks episode to learn more about how the James Webb Space Telescope has found definitive evidence for carbon dioxide in the atmosphere of a gas giant planet orbiting a Sun-like star 700 light-years away.

NASA’s Webb Detects Carbon Dioxide in Exoplanet Atmosphere

NASA’s James Webb Space Telescope has captured the first definitive proof of carbon dioxide in the atmosphere of an exoplanet – a planet outside the solar system. This observation of a gas giant planet orbiting a Sun-like star 700 light-years away from Earth provides important insights into the composition and formation of the planet. The finding, which is accepted for publication in the journal Nature, offers evidence that Webb may be able to detect and measure carbon dioxide in the thinner atmospheres of smaller, rocky planets in the future.

The exoplanet, WASP-39 b, is a hot gas giant with a mass roughly one-quarter that of <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

Jupiter is the largest planet in the solar system and the fifth planet from the sun. It is a gas giant with a mass greater then all of the other planets combined. Its name comes from the Roman god Jupiter.

” data-gt-translate-attributes=”["attribute":"data-cmtooltip", "format":"html"]”>Jupiter (about the same as <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

Saturn is the sixth planet from the sun and has the second-largest mass in the Solar System. It has a much lower density than Earth but has a much greater volume. Saturn's name comes from the Roman god of wealth and agriculture.

” data-gt-translate-attributes=”["attribute":"data-cmtooltip", "format":"html"]”>Saturn) and a diameter 1.3 times greater than Jupiter. Its extreme puffiness is related in part to its high temperature (about 1,600 degrees <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

The Fahrenheit scale is a temperature scale, named after the German physicist Daniel Gabriel Fahrenheit and based on one he proposed in 1724. In the Fahrenheit temperature scale, the freezing point of water freezes is 32 °F and water boils at 212 °F, a 180 °F separation, as defined at sea level and standard atmospheric pressure.&nbsp;

” data-gt-translate-attributes=”["attribute":"data-cmtooltip", "format":"html"]”>Fahrenheit or 900 degrees <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

The Celsius scale, also known as the centigrade scale, is a temperature scale named after the Swedish astronomer Anders Celsius. In the Celsius scale, 0 °C is the freezing point of water and 100 °C is the boiling point of water at 1 atm pressure.

” data-gt-translate-attributes=”["attribute":"data-cmtooltip", "format":"html"]”>Celsius). Unlike the cooler, more compact gas giants in our solar system, WASP-39 b orbits very close to its star. In fact, it is only about one-eighth the distance between the Sun and Mercury and completes one circuit in just over four Earth-days. The planet’s discovery, reported in 2011, was made based on ground-based detections of the subtle, periodic dimming of light from its host star as the planet transits, or passes in front of the star.

Previous observations from other telescopes, including NASA’s Hubble and Spitzer space telescopes, revealed the planet’s atmosphere contained water vapor, sodium, and potassium. Webb’s unmatched infrared sensitivity has now confirmed the presence of carbon dioxide on this exoplanet as well.

Exoplanet WASP-39 b (NIRSpec Transmission Spectrum)

A transmission spectrum of the hot gas giant exoplanet WASP-39 b captured by Webb’s Near-Infrared Spectrograph (NIRSpec) on July 10, 2022, reveals the first clear evidence for carbon dioxide in a planet outside the solar system. This is also the first detailed exoplanet transmission spectrum ever captured that covers wavelengths between 3 and 5.5 microns.
A transmission spectrum is made by comparing starlight filtered through a planet’s atmosphere as it moves in front of the star, to the unfiltered starlight detected when the planet is beside the star. Each of the 95 data points (white circles) on this graph represents the amount of a specific wavelength of light that is blocked by the planet and absorbed by its atmosphere. Wavelengths that are preferentially absorbed by the atmosphere appear as peaks in the transmission spectrum. The peak centered around 4.3 microns represents the light absorbed by carbon dioxide.
The gray lines extending above and below each data point are error bars that show the uncertainty of each measurement, or the reasonable range of actual possible values. For a single observation, the error on these measurements is extremely small.
The blue line is a best-fit model that takes into account the data, the known properties of WASP-39 b and its star (e.g., size, mass, temperature), and assumed characteristics of the atmosphere. Researchers can vary the parameters in the model – changing unknown characteristics like cloud height in the atmosphere and abundances of various gases – to get a better fit and further understand what the atmosphere is really like. The model shown here assumes that the planet is made primarily of hydrogen and helium, with small amounts of water and carbon dioxide, and a thin veil of clouds.
The observation was made using the NIRSpec PRISM bright object time-series mode, which involves using a prism to spread out light from a single bright object (like the star WASP-39) and measuring the brightness of each wavelength at set intervals of time.
Credit: NASA, ESA, CSA, Leah Hustak (STScI), Joseph Olmsted (STScI)

Filtered Starlight

Transiting planets like WASP-39 b, whose orbits we observe edge-on rather than from above, can provide scientists with ideal opportunities to investigate planetary atmospheres. During a transit, some of the starlight is eclipsed by the planet completely (causing the overall dimming) and some is transmitted through the planet’s atmosphere.

Because different gases absorb different combinations of colors, investigators can analyze small differences in brightness of the transmitted light across a spectrum of wavelengths to determine exactly what an atmosphere is made of. With its combination of an inflated atmosphere and frequent transits, WASP-39 b is an ideal target for transmission spectroscopy.

Exoplanet WASP-39 b (NIRSpec Transit Light Curves)

A series of light curves from Webb’s Near-Infrared Spectrograph (NIRSpec) shows the change in brightness of three different wavelengths (colors) of light from the WASP-39 star system over time as the planet transited the star on July 10, 2022. A transit occurs when an orbiting planet moves between the star and the telescope, blocking some of the light from the star.
This observation was made using the NIRSpec PRISM bright object time-series mode, which involves using a prism to spread out light from a single bright object (like the star WASP-39) and measure the brightness of each wavelength at set intervals of time.
To capture these data, Webb stared at the WASP-39 star system for more than eight hours, beginning about three hours before the transit and ending about two hours after the transit was complete. The transit itself lasted about three hours. Each curve shown here includes a total of 500 individual brightness measurements – about one per minute.
Although all colors are blocked to some extent by the planet, some colors are blocked more than others. This occurs because each gas in the atmosphere absorbs different amounts of specific wavelengths. As a result, each color has a slightly different light curve. During the transit of WASP-39 b, light with a wavelength of 4.3 microns is not as bright as 3.0-micron or 4.7-micron light because it is absorbed by carbon dioxide.
Credit: NASA, ESA, CSA, Leah Hustak (STScI), Joseph Olmsted (STScI)

First Clear Detection of Carbon Dioxide

The team of researchers used Webb’s Near-Infrared Spectrograph (NIRSpec) for its observations of WASP-39 b. In the resulting spectrum of the exoplanet’s atmosphere, a small hill between 4.1 and 4.6 microns presents the first clear, detailed evidence of carbon dioxide ever detected in a planet outside the solar system.

“As soon as the data appeared on my screen, the whopping carbon dioxide feature grabbed me,” said Zafar Rustamkulov, a graduate student at Johns Hopkins University and member of the JWST Transiting Exoplanet Community Early Release Science team, which undertook this investigation. “It was a special moment, crossing an important threshold in exoplanet sciences.”

No observatory before has ever measured such subtle differences in brightness of so many individual colors across the 3 to 5.5-micron range in an exoplanet transmission spectrum. Access to this part of the spectrum is crucial for measuring the abundances of gases like water and methane, as well as carbon dioxide. These are gases that are thought to exist in many different types of exoplanets.

“Detecting such a clear signal of carbon dioxide on WASP-39 b bodes well for the detection of atmospheres on smaller, terrestrial-sized planets,” said Natalie Batalha of the University of California at Santa Cruz, who leads the team.

Understanding the composition of a planet’s atmosphere is essential because it tells us something about the origin of the planet and how it evolved. “Carbon dioxide molecules are sensitive tracers of the story of planet formation,” said Mike Line of Arizona State University, another member of this research team. “By measuring this carbon dioxide feature, we can determine how much solid versus how much gaseous material was used to form this gas giant planet. In the coming decade, JWST will make this measurement for a variety of planets, providing insight into the details of how planets form and the uniqueness of our own solar system.”

Early Release Science

This NIRSpec prism observation of WASP-39 b is just one part of a larger investigation that includes observations of the planet using multiple Webb instruments, as well as observations of two other transiting planets. The investigation, which is part of the Early Release Science program, was designed to provide the exoplanet research community with robust Webb data as soon as possible.

“The goal is to analyze the Early Release Science observations quickly and develop open-source tools for the science community to use,” explained Vivien Parmentier, a co-investigator from Oxford University. “This enables contributions from all over the world and ensures that the best possible science will come out of the coming decades of observations.”

Natasha Batalha, co-author on the paper from NASA’s Ames Research Center, adds that “NASA’s open science guiding principles are centered in our Early Release Science work, supporting an inclusive, transparent, and collaborative scientific process.”

Reference: “Identification of carbon dioxide in an exoplanet atmosphere” by The JWST Transiting Exoplanet Community Early Release Science Team: Eva-Maria Ahrer, Lili Alderson, Natalie M. Batalha, Natasha E. Batalha, Jacob L. Bean, Thomas G. Beatty, Taylor J. Bell, Björn Benneke, Zachory K. Berta-Thompson, Aarynn L. Carter, Ian J. M. Crossfield, Néstor Espinoza, Adina D. Feinstein, Jonathan J. Fortney, Neale P. Gibson, Jayesh M. Goyal, Eliza M. -R. Kempton, James Kirk, Laura Kreidberg, Mercedes López-Morales, Michael R. Line, Joshua D. Lothringer, Sarah E. Moran, Sagnick Mukherjee, Kazumasa Ohno, Vivien Parmentier, Caroline Piaulet, Zafar Rustamkulov, Everett Schlawin, David K. Sing, Kevin B. Stevenson, Hannah R. Wakeford, Natalie H. Allen, Stephan M. Birkmann, Jonathan Brande, Nicolas Crouzet, Patricio E. Cubillos, Mario Damiano, Jean-Michel Désert, Peter Gao, Joseph Harrington, Renyu Hu, Sarah Kendrew, Heather A. Knutson, Pierre-Olivier Lagage, Jérémy Leconte, Monika Lendl, Ryan J. MacDonald, E. M. May, Yamila Miguel, Karan Molaverdikhani, Julianne I. Moses, Catriona Anne Murray, Molly Nehring, Nikolay K. Nikolov, D. J. M. Petit dit de la Roche, Michael Radica, Pierre-Alexis Roy, Keivan G. Stassun, Jake Taylor, William C. Waalkes, Patcharapol Wachiraphan, Luis Welbanks, Peter J. Wheatley, Keshav Aggarwal, Munazza K. Alam, Agnibha Banerjee, Joanna K. Barstow, Jasmina Blecic, S. L. Casewell, Quentin Changeat, K. L. Chubb, Knicole D. Colón, Louis-Philippe Coulombe, Tansu Daylan, Miguel de Val-Borro, Leen Decin, Leonardo A. Dos Santos, Laura Flagg, Kevin France, Guangwei Fu, A. García Muñoz, John E. Gizis, Ana Glidden, David Grant, Kevin Heng, Thomas Henning, Yu-Cian Hong, Julie Inglis, Nicolas Iro, Tiffany Kataria, Thaddeus D. Komacek, Jessica E. Krick, Elspeth K.H. Lee, Nikole K. Lewis, Jorge Lillo-Box, Jacob Lustig-Yaeger, Luigi Mancini, Avi M. Mandell, Megan Mansfield, Mark S. Marley, Thomas Mikal-Evans, Giuseppe Morello, Matthew C. Nixon, Kevin Ortiz Ceballos, Anjali A. A. Piette, Diana Powell, Benjamin V. Rackham, Lakeisha Ramos-Rosado, Emily Rauscher, Seth Redfield, Laura K. Rogers, Michael T. Roman, Gael M. Roudier, Nicholas Scarsdale, Evgenya L. Shkolnik, John Southworth, Jessica J. Spake, Maria E Steinrueck, Xianyu Tan, Johanna K. Teske, Pascal Tremblin, Shang-Min Tsai, Gregory S. Tucker, Jake D. Turner, Jeff A. Valenti, Olivia Venot, Ingo P. Waldmann, Nicole L. Wallack, Xi Zhang and Sebastian Zieba, Accepted, Nature.

The James Webb Space Telescope is the world’s premier space science observatory. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

Adblock test (Why?)

Source link

Continue Reading


SpaceX delivers Russian, Native American women to station – CTV News




A Russian cosmonaut who caught a U.S. lift to the International Space Station arrived at her new home Thursday for a five-month stay, accompanied by a Japanese astronaut and two from NASA, including the first Native American woman in space.

The SpaceX capsule pulled up to the station a day after launching into orbit. The linkup occurred 260 miles (420 kilometers) above the Atlantic, just off the west coast of Africa.

It was the first time in 20 years that a Russian hitched a ride from NASA’s Kennedy Space Center, the result of a new agreement reached despite friction over the war in Ukraine.

Cosmonaut Anna Kikina joins two Russians already at the orbiting outpost. She’ll live and work on the Russian side until March, before returning to Earth in the same SpaceX capsule.

Riding along with Kikina: Marine Col. Nicole Mann, a member of the Wailacki of the Round Valley Indian Tribes in California, Navy Capt. Josh Cassada and Japan’s Koichi Wakata, the only experienced space flier of the bunch with five missions.

As the capsule closed in, the space station residents promised the new arrivals that their bunks were ready and the outside light was on.

“You guys are the best,” replied Mann, the capsule’s commander.

Mann and her crew will replace three Americans and one Italian who will return in their own SpaceX capsule next week after almost half a year up there. Until then, 11 people will share the orbiting lab.

NASA astronaut Frank Rubio arrived two weeks ago. He launched on a Soyuz rocket from Kazakhstan, kicking off the cash-free crew swapping between NASA and the Russian Space Agency. They agreed to the plan last summer in order to always have an American and Russian at the station.

Until Elon Musk’s SpaceX started launching astronauts two years ago, NASA was forced to spend tens of millions of dollars every time an astronaut flew up on a Soyuz.


The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute’s Department of Science Education. The AP is solely responsible for all content.

Adblock test (Why?)

Source link

Continue Reading


NASA Wants To Mine The Moon, But Law Experts Say It's Not That Simple – SlashGear



The first roadblock facing humans as we seek to expand our presence in the solar system lies in technology. NASA reports that it takes about seven months (measured in Earth days) to travel from our planet’s surface to Mars. Thrillist notes that travel to the Moon only requires a three-day journey, while exploration of Jupiter or Saturn (the next bodies out from Mars) would require a lengthy, six- or seven-year voyage, respectively. On a technical level, our current means of launching satellites and humans at these distant bodies is exactly that, a launch (via NASA). In order to make space travel more feasible for human explorers, we would need to develop a propulsion system that could continually deliver powered flight to a spacecraft, or at least the ability to continually augment flight speed, rather than simply relying on initial launch velocity to carry the craft along to its final destination.

This means a combination of two distinct realities: Humans must develop a brand new means of propulsion that requires far less storage space and mass, a revolutionary idea to be sure; and we must develop the ability to hop between planets and refuel along this lengthy journey. Therefore, technological advancement that would support increased space travel would require both colonization and a capacity for extracting mineral resources from the surfaces of neighboring planets and moons. Continuous habitation in new worlds would be required to support these efforts.

Adblock test (Why?)

Source link

Continue Reading


Good planning gets the bike rolling – Science Daily



In surveys, a large majority of respondents usually agree that cycling can make a significant contribution to reducing greenhouse gases and to sustainable transport, especially in densely populated areas. In contrast, for many countries in reality there is a large gap between desired and actual numbers. In Germany, for example, only 20% of the short-distance of everyday trips in residential environments are covered by bicycle.

When asked about the reasons, one point repeatedly comes up top of the list: The perceived or actual lack of safety on the bike routes used. Increasing the share of cycling trips in the modal split thus depends crucially on a well-developed bike path infrastructure. However, designing efficient bike path networks is a complex problem that involves balancing a variety of constraints while meeting overall cycling demand. In addition, many municipalities still only have small budgets available for improving bicycle infrastructure.

In their study, researchers from the Chair of Network Dynamics / Center for Advancing Electronics Dresden (cfaed) at TU Dresden propose a new approach to generate efficient bike path networks. This explicitly considers the demand distribution and route choice of cyclists based on safety preferences. Typically, minimizing the travel distance is not the only goal, but aspects such as (perceived) safety or attractiveness of a route are also taken into account.

The starting point of this approach is a reversal of the usual planning process: Under real conditions, a bike path network is created by constantly adding bike paths to more streets. The cfaed scientists, on the contrary, start with an ideal, complete network, in which all streets in a city are equipped with a bike path. In a virtual process, they gradually remove individual, less used bike path segments from this network. The route selection of the cyclists is continuously updated. Thus, a sequence of bike path networks is created that is always adapted to the current usage. Each stage of this sequence corresponds to a variant that could be implemented with less financial effort. In this way, city planners can select the version that fits their municipality’s budget.

“In our study, we illustrate the applicability of this demand-driven planning scheme for dense urban areas of Dresden and Hamburg,” explains Christoph Steinacker, first author of the study. “We approach a real-life issue here using the theoretic toolbox of network dynamics. Our approach allows us to compare efficient bike path networks under different conditions. For example, it allows us to measure the influence of different demand distributions on the emerging network structures.” The proposed approach can thus provide a quantitative assessment of the structure of current and planned bike path networks and support demand-driven design of efficient infrastructures.

Story Source:

Materials provided by Technische Universität Dresden. Note: Content may be edited for style and length.

Adblock test (Why?)

Source link

Continue Reading