Why study space radiation? To keep astronauts safe - Brighter World | Canada News Media
Connect with us

Science

Why study space radiation? To keep astronauts safe – Brighter World

Published

 on


A satellite built by McMaster students and researchers is heading into orbit to help protect astronauts as they travel further and stay out there longer. (Kayla Da Silva, McMaster University)


With humanity eyeing space travel that would take astronauts beyond the low Earth orbit we’ve become accustomed to — say, on missions to Mars or beyond — it has become even more crucial to understand the long-term effects of space radiation. 

For the last eight years, a team of students and researchers at McMaster have been building a satellite designed to do just that. And it’s about to launch into space on board a SpaceX rocket.  

The satellite, named NEUDOSE — which is pronounced “new dose” and stands for Neutron Dosimetry (the measurement of radiation doses) and Exploration — is a state-of-the-art instrument capable of measuring the radiation levels that astronauts are exposed to in outer space.  

But to understand why a satellite that’s barely the size of a loaf of bread is such a monumental achievement, we first need to understand why space radiation poses such a major risk to astronauts and how this satellite will help address those risks.  

This little manoeuvre is going to cost us 

“Just like the sun produces light that we can see down here on Earth, the sun’s also emitting particles that are traveling through space,” explains Eric Johnston, co-Principal Investigator for the NEUDOSE mission and a McMaster graduate. 

In addition to this, stars and other objects also contribute to the overall radiation environment in outer space.   

Here on Earth, the majority of these particles are stopped by the atmosphere.  

But in space, that natural protection doesn’t exist, meaning these particles are free to interact with astronauts and spacecrafts.  

“Without that extra protection we’re used to having, radiation is a lot more damaging to astronauts,” says Johnston.  

Among other physiological effects, this damage includes the development of cancer, the formation of cataracts in the eyes, and cardiovascular issues, all of which can go undetected for years.  

And for the NEUDOSE team, it’s not hard to imagine how this risk could be amplified on deep space missions.  

Consider a human mission to Mars.  

It could take astronauts upward of nine months to reach the planet. In that time, astronauts may receive a dose of radiation equivalent to what a human on Earth would receive in their entire lifetime, explains McMaster grad Andrei Hanu, co-Principal Investigator on the NEUDOSE mission. 

Start factoring in time spent on the planet and travelling back to Earth and you can see why the effects of long-term exposure can be catastrophic.  

Houston, we have a problem 

But why is it so hard to protect humans from radiation in space? 

According to Johnston, we get a reminder of it every time we go for an X-ray. 

“If you imagine you’re going to get an X-ray at the hospital, they’ll put a lead vest on you,” he explains. “But there’s only so much lead and material we can bring up to space at any given time.” 

There’s also the fact that we don’t really know much about the quality of radiation up there — that is, the types and amounts of radiation present in space.  

“We’ve measured the bulk quantities to say, ‘Okay, we think it’s about this much damage,’” explains Johnston. “But the quality of radiation can really alter the long-term damage that might happen 20 or 30 years down the road.” 

This gap in knowledge makes it extremely difficult for experts to adequately prepare astronauts for lengthy deep space missions.  

“If we’re going to push astronauts further into space then we really need to understand the long-term effects of human space flight,” explains Johnston. “And to do that, we need to first know the quality of the radiation.” 

This is the way 

Shielding against all space radiation is an unrealistic goal, Hanu says. 

But there may be a more effective way to mitigate its effects.  

“A better approach would be to understand the space radiation environment,” explains Hanu.  

Doing so would allow experts to understand the types and levels of radiation present during missions and prepare adequate protections for those exposure levels.  

That’s where NEUDOSE comes in.  

The state-of-the-art device comprises two separate instruments. 

The first is a satellite that does everything you’d expect — namely, collect power from the sun and transmit data back to earth. According to Johnston, we can think of this instrument as the brains of the operation.  

The second instrument is a novel radiation detector that is designed to measure space radiation and determine the type of radiation present as well as its dose, all in real time. This device is one of the first tissue equivalent counters capable of measuring the quality of radiation.  

The data it collects will be transmitted back to a ground station at McMaster, where researchers will analyze the data and use its measurements to understand the long-term effects of space radiation. 

“Right now, this is a technology demonstration mission,” says Hanu. “But eventually NEUDOSE will be a standard radiation instrument for future missions to the Moon and eventually deep space.” 

Adblock test (Why?)



Source link

Continue Reading

News

Here’s how Helene and other storms dumped a whopping 40 trillion gallons of rain on the South

Published

 on

 

More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.

That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.

“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”

The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.

Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.

Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.

Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.

Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.

Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.

“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”

The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.

North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.

Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”

Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.

Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.

For Dello, the “fingerprints of climate change” were clear.

“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”

___

Follow AP’s climate coverage at https://apnews.com/hub/climate

___

Follow Seth Borenstein on Twitter at @borenbears

___

Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.

Source link

Continue Reading

Science

‘Big Sam’: Paleontologists unearth giant skull of Pachyrhinosaurus in Alberta

Published

 on

 

It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.

On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.

They call it “Big Sam.”

The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.

It didn’t die alone.

“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.

She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”

“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.

The head alone, she said, is about the size of a baby elephant.

The discovery was a long time coming.

The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.

“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.

When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”

“It contains about 100 to 300 bones per square metre,” she said.

Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.

About a year ago, they found the second adult: Big Sam.

Bamforth said both dinosaurs are believed to have been the elders in the herd.

“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.

“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”

The genders of the two adults are unknown.

Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.

The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.

She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.

“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.

“It’s pretty exciting.”

This report by The Canadian Press was first published Sept. 25, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending

Exit mobile version