adplus-dvertising
Connect with us

Science

How many atoms are in the observable universe? – Livescience.com

Published

 on


All matter in the universe — no matter how big, small, young or old — is made up of atoms

Each of these building blocks consists of a positively charged nucleus, made up of protons and neutrons, and negatively charged orbiting electrons. The number of protons, neutrons and electrons an atom has determines which element it belongs to on the periodic table and influences how it reacts with other atoms around it. Everything you see around you is just a configuration of different atoms interacting with one another in unique ways.

So, if everything is made of atoms, do we know how many atoms are in the universe?

Related: Why does outer space look black?

To start out “small,” there are around 7 octillion, or 7×10^27 (7 followed by 27 zeros), atoms in an average human body, according to The Guardian. Given this vast sum of atoms in one person alone, you might think it would be impossible to determine how many atoms are in the entire universe. And you’d be right: Because we have no idea how large the entire universe really is, we can’t find out how many atoms are within it. 

However, it is possible to work out roughly how many atoms are in the observable universe — the part of the universe that we can see and study — using some cosmological assumptions and a bit of math.

The observable universe

The universe was created during the Big Bang 13.8 billion years ago. As it exploded into existence, from a single point of infinite mass and temperature, the universe began expanding outward and hasn’t stopped since. 

Because the universe is 13.8 billion years old and the observable universe stretches as far away from us as light can travel in the time since the universe was born, you might assume that the observable universe stretches only 13.8 billion light-years in every direction. But because the universe is constantly expanding, this isn’t the case. When we observe a distant galaxy or star, what we are really seeing is where it was when it first emitted the light. But by the time the light reaches us, the galaxy or star is much farther away than it was when we saw it. Using cosmic microwave background radiation, we can work out how fast the universe is expanding, and because that rate is constant — which is currently scientists’ best guess (although some scientists think it may be slowing down) — that means that the observable universe actually stretches 46 billion light-years in all directions, according to Live Science’s sister site Space.com.

But knowing how big the observable universe is doesn’t tell us everything we know about how many atoms are in it. We also need to know how much matter, or stuff, is in it.

Notice how the universe has expanded since the Big Bang happened 13.8 billion years ago.  (Image credit: Shutterstock)

Cosmic assumptions

Matter is not the only thing in the universe, however. In fact, it makes up only about 5% of the universe, according to NASA. The rest consists of dark energy and dark matter, but because they are not made up of atoms, we don’t need to worry about them for this mystery. 

Related: What happens in intergalactic space?

According to Einstein’s famous E=mc^2 equation, energy and mass, or matter, are interchangeable, so it is possible for matter to be created from or transformed into energy. But on the cosmic scale of the universe, we can assume that the amount of matter created and uncreated cancel each other out. This means matter is finite, so there are the same number of atoms in the observable universe as there always have been, according to Scientific American. This is important because our picture of the observable universe is not a single snapshot in time.

According to our observations of the known universe, the physical laws that govern it are the same everywhere. Combined with the assumption that the expansion of the universe is constant, this means that, on a large scale, matter is uniformly distributed throughout the cosmos — a concept known as the cosmological principle. In other words, there are no regions of the universe that have more matter than others. This idea allows scientists to accurately estimate the number of stars and galaxies in the observable universe, which is useful because most atoms are found within stars.

Simplifying the equation

Knowing the observable universe’s size and that matter is equally and finitely distributed across it makes it a lot easier to calculate the number of atoms. However, there are a few more assumptions we have to make before we break out the calculator.

First, we must assume that all atoms are contained within stars, even though they aren’t. Unfortunately, we have a much less accurate idea of how many planets, moons and space rocks there are in the observable universe compared with stars, which means it is harder to add them into the equation. But because the vast majority of atoms in the universe are contained within stars, we can get a good approximation of the number of atoms in the universe by figuring out how many atoms there are in stars and ignoring everything else.

Second, we must assume that all atoms in the universe are hydrogen atoms, even though they aren’t. Hydrogen atoms account for around 90% of the total atoms in the universe, according to Los Alamos National Laboratory, and an even higher percentage of the atoms in stars, which we are focusing on. As you will see shortly, it also makes the calculations a lot simpler.

Doing the math

Now, it’s finally time to do the math. 

To work out the number of atoms in the observable universe, we need to know its mass, which means we have to find out how many stars there are. There are around 10^11 to 10^12 galaxies in the observable universe, and each galaxy contains between 10^11 and 10^12 stars, according to the European Space Agency. This gives us somewhere between 10^22 and 10^24 stars. For the purposes of this calculation, we can say that there are 10^23 stars in the observable universe. Of course, this is just a best guess; galaxies can range in size and number of stars, but because we can’t count them individually, this will have to do for now.

On average, a star weighs around 2.2×10^32 pounds (10^32 kilograms), according to Science ABC, which means that the mass of the universe is around 2.2×10^55 pounds (10^55 kilograms). Now that we know the mass, or amount of matter, we need to see how many atoms fit into it. On average, each gram of matter has around 10^24 protons, according to Fermilab, a national laboratory for particle physics in Illinois. That means it is the same as the number of hydrogen atoms, because each hydrogen atom has only one proton (hence why we made the earlier assumption about hydrogen atoms). 

This gives us 10^82 atoms in the observable universe. To put that into context, that is 100,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 atoms. 

This number is only a rough guess, based on a number of approximations and assumptions. But given our current understanding of the observable universe, it is unlikely to be too far off the mark. 

Originally published on Live Science.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

News

Here’s how Helene and other storms dumped a whopping 40 trillion gallons of rain on the South

Published

 on

 

More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.

That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.

“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”

The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.

Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.

Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.

Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.

Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.

Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.

“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”

The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.

North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.

Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”

Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.

Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.

For Dello, the “fingerprints of climate change” were clear.

“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”

___

Follow AP’s climate coverage at https://apnews.com/hub/climate

___

Follow Seth Borenstein on Twitter at @borenbears

___

Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.

Source link

Continue Reading

Science

‘Big Sam’: Paleontologists unearth giant skull of Pachyrhinosaurus in Alberta

Published

 on

 

It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.

On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.

They call it “Big Sam.”

The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.

It didn’t die alone.

“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.

She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”

“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.

The head alone, she said, is about the size of a baby elephant.

The discovery was a long time coming.

The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.

“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.

When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”

“It contains about 100 to 300 bones per square metre,” she said.

Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.

About a year ago, they found the second adult: Big Sam.

Bamforth said both dinosaurs are believed to have been the elders in the herd.

“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.

“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”

The genders of the two adults are unknown.

Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.

The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.

She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.

“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.

“It’s pretty exciting.”

This report by The Canadian Press was first published Sept. 25, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending