adplus-dvertising
Connect with us

Science

Mining the moon's water will require a massive infrastructure investment, but should we? – Yahoo News Canada

Published

 on


<img class="caas-img has-preview" alt="Building a moon base will require extensive resources and infrastructure. (Shutterstock)” src=”https://s.yimg.com/ny/api/res/1.2/.m2KoEuLN10EA5S4WJVJgg–/YXBwaWQ9aGlnaGxhbmRlcjt3PTk2MDtoPTQyNw–/https://s.yimg.com/uu/api/res/1.2/1uRhQ0.2td5TYJER6DobpA–~B/aD02NDE7dz0xNDQwO2FwcGlkPXl0YWNoeW9u/https://media.zenfs.com/en/the_conversation_canada_501/2d6de465d32ef88321836f92f2c4c30b” data-src=”https://s.yimg.com/ny/api/res/1.2/.m2KoEuLN10EA5S4WJVJgg–/YXBwaWQ9aGlnaGxhbmRlcjt3PTk2MDtoPTQyNw–/https://s.yimg.com/uu/api/res/1.2/1uRhQ0.2td5TYJER6DobpA–~B/aD02NDE7dz0xNDQwO2FwcGlkPXl0YWNoeW9u/https://media.zenfs.com/en/the_conversation_canada_501/2d6de465d32ef88321836f92f2c4c30b”>

Building a moon base will require extensive resources and infrastructure. (Shutterstock)

We live in a world in which momentous decisions are made by people often without forethought. But some things are predictable, including that if you continually consume a finite resource without recycling, it will eventually run out.

Yet, as we set our sights on embarking back to the moon, we will be bringing with us all our bad habits, including our urge for unrestrained consumption.

Since the 1994 discovery of water ice on the moon by the Clementine spacecraft, excitement has reigned at the prospect of a return to the moon. This followed two decades of the doldrums after the end of Apollo, a malaise that was symptomatic of an underlying lack of incentive to return.

That water changed everything. The water ice deposits are located at the poles of the moon hidden in the depths of craters that are forever devoid of sunlight.

Since then, not least due to the International Space Station, we have developed advanced techniques that allow us to recycle water and oxygen with high efficiency. This makes the value of supplying local water for human consumption more tenuous, but if the human population on the Moon grows so will demand. So, what to do with the water on the moon?

There are two commonly proposed answers: energy storage using fuel cells and fuel and oxidizer for propulsion. The first is easily dispensed with: fuel cells recycle their hydrogen and oxygen through electrolysis when they are recharged, with very little leakage.

Energy and fuel

The second — currently the primary raison d’être for mining water on the moon — is more complex but no more compelling. It is worth noting that SpaceX uses a methane/oxygen mix in its rockets, so they would not require the hydrogen propellant.

So, what is being proposed is to mine a precious and finite resource and burn it, just like we have been doing with petroleum and natural gas on Earth. The technology for mining and using resources in space has a technical name: in-situ resource utilization.

And while oxygen is not scarce on the moon (around 40 per cent of the moon’s minerals comprise oxygen), hydrogen most certainly is.

Extracting water from the moon

Hydrogen is highly useful as a reductant as well as a fuel. The moon is a vast repository of oxygen within its minerals but it requires hydrogen or other reductant to be freed.

For instance, ilmenite is an oxide of iron and titanium and is a common mineral on the moon. Heating it to around 1,000 C with hydrogen reduces it to water, iron metal (from which an iron-based technology can be leveraged) and titanium oxide. The water may be electrolyzed into hydrogen — which is recycled — and oxygen; the latter effectively liberated from the ilmenite. By burning hydrogen extracted from water, we are compromising the prospects for future generations: this is the crux of sustainability.

But there are other, more pragmatic issues that emerge. How do we access these water ice resources buried near the lunar surface? They are located in terrain that is hostile in every sense of the word, in deep craters hidden from sunlight — no solar power is available — at temperatures of around 40 Kelvin, or -233 C. At such cryogenic temperatures, we have no experience in conducting extensive mining operations.

Read more: US seeks to change the rules for mining the Moon

Peaks of eternal light are mountain peaks located in the region of the south pole that are exposed to near-constant sunlight. One proposal from NASA’s Jet Propulsion Lab envisages beaming sunlight from giant reflectors located at these peaks into craters.

Black and white image of the moon's surface

Black and white image of the moon’s surface

These giant mirrors must be transported from Earth, landed onto these peaks and installed and controlled remotely to illuminate the deep craters. Then robotic mining vehicles can venture into the now-illuminated deep craters to recover the water ice using the reflected solar energy.

Water ice may be sublimed into vapour for recovery by direct thermal or microwave heating – because of its high heat capacity, this will consume a lot of energy, which must be supplied by the mirrors. Alternatively, it may be physically dug out and subsequently melted at barely more modest temperatures.

Using the water

After recovering the water, it needs to be electrolyzed into hydrogen and oxygen. To store them, they should be liquefied for minimum storage tank volume.

Although oxygen can be liquefied easily, hydrogen liquefies at 30 Kelvin (-243 C) at a minimum of 15 bar pressure. This requires extra energy to liquefy hydrogen and maintain it as liquid without boil-off. This cryogenically cooled hydrogen and oxygen (LH2/LOX) must be transported to its location of use while maintaining its low temperature.

So, now we have our propellant stocks for launching stuff from the moon.

This will require a launchpad, which may be located at the moon’s equator for maximum flexibility of launching into any orbital inclination as a polar launch site will be limited to polar launches — to the planned Lunar Gateway only. A lunar launchpad will require extensive infrastructure development.

In summary, the apparent ease of extracting water ice from the lunar poles belies a complex infrastructure required to achieve it. The costs of infrastructure installation will negate the cost savings rationale for in-situ resource utilization.

Alternatives to extraction

There are more preferable options. Hydrogen reduction of ilmenite to yield iron metal, rutile and oxygen provides most of the advantages of exploiting water. Oxygen constitutes the lion’s share of the LH2/LOX mixture. It involves no great infrastructure: thermal power may be generated by modest-sized solar concentrators integrated into the processing units. Each unit can be deployed where it is required – there is no need for long traverses between sites of supply and demand.

Hence, we can achieve almost the same function through a different, more readily achievable route to in-situ resource utilization that is also sustainable by mining abundant ilmenite and other lunar minerals.

Let us not keep repeating the same unsustainable mistakes we have made on Earth — we have a chance to get it right as we spread into the solar system.

This article is republished from The Conversation, a nonprofit news site dedicated to sharing ideas from academic experts. It was written by: Alex Ellery, Carleton University.

Read more:

Alex Ellery does not work for, consult, own shares in or receive funding from any company or organisation that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

News

Here’s how Helene and other storms dumped a whopping 40 trillion gallons of rain on the South

Published

 on

 

More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.

That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.

“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”

The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.

Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.

Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.

Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.

Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.

Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.

“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”

The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.

North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.

Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”

Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.

Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.

For Dello, the “fingerprints of climate change” were clear.

“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”

___

Follow AP’s climate coverage at https://apnews.com/hub/climate

___

Follow Seth Borenstein on Twitter at @borenbears

___

Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.

Source link

Continue Reading

Science

‘Big Sam’: Paleontologists unearth giant skull of Pachyrhinosaurus in Alberta

Published

 on

 

It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.

On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.

They call it “Big Sam.”

The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.

It didn’t die alone.

“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.

She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”

“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.

The head alone, she said, is about the size of a baby elephant.

The discovery was a long time coming.

The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.

“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.

When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”

“It contains about 100 to 300 bones per square metre,” she said.

Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.

About a year ago, they found the second adult: Big Sam.

Bamforth said both dinosaurs are believed to have been the elders in the herd.

“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.

“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”

The genders of the two adults are unknown.

Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.

The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.

She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.

“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.

“It’s pretty exciting.”

This report by The Canadian Press was first published Sept. 25, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending