adplus-dvertising
Connect with us

Science

Lost in Space-Time newsletter: Will a twisted universe save cosmology? – News AKMI

Published

 on


Albert Einstein’s general theory of relativity “didn’t have to be”

Hello, and welcome to November’s Lost in Space-Time, the monthly physics newsletter that unpicks the fabric of the universe and attempts to stitch it back together in a slightly different way. To receive this free, monthly newsletter in your inbox, sign up here.

Einstein’s forgotten twisted universe

There’s a kind of inevitability about the fact that, if you write a regular newsletter about fundamental physics, you’ll regularly find yourself banging on about Albert Einstein. As much as it comes with the job, I also make no apology for it: he is a towering figure in the history of not just fundamental physics, but science generally.

A point that historians of science sometimes make about his most monumental achievement, the general theory of relativity, is that, pretty much uniquely, it was a theory that didn’t have to be. When you look at the origins of something like Charles Darwin’s theory of evolution by natural selection, for example – not to diminish his magisterial accomplishment in any way – you’ll find that other people had been scratching around similar ideas surrounding the origin and change of species for some time as a response to the burgeoning fossil record, among other discoveries.

Even Einstein’s special relativity, the precursor to general relativity that first introduced the idea of warping space and time, responded to a clear need (first distinctly identified with the advent of James Clerk Maxwell’s laws of electromagnetism in the 1860s) to explain why the speed of light appeared to be an absolute constant.

When Einstein presented general relativity to the world in 1915, there was nothing like that. We had a perfectly good working theory of gravity, the one developed by Isaac Newton more than two centuries earlier. True, there was a tiny problem in that it couldn’t explain some small wobbles in the orbit of Mercury, but they weren’t of the size that demanded we tear up our whole understanding of space, time, matter and the relationship between them. But pretty much everything we know (and don’t know) about the wider universe today stems from general relativity: the expanding big bang universe and the standard model of cosmology, dark matter and energy, black holes, gravitational waves, you name it.

So why am I banging on about this? Principally because, boy, do we need a new idea in cosmology now – and in a weird twist of history, it might just be Einstein who supplies it. I’m talking about an intriguing feature by astrophysicist Paul M. Sutter in the magazine last month . It deals with perhaps general relativity’s greatest (perceived, at least) weakness – the way it doesn’t mesh with other bits of physics, which are all explained by quantum theory these days. The mismatch exercised Einstein a great deal, and he spent much of his later years engaged in a fruitless quest to unify all of physics.

Perhaps his most promising attempt came with a twist – literally – on general relativity that Einstein played about with early on. By developing a mathematical language not just for how space-time bends (which is the basis of how gravity is created within relativity) but for how it twists, he hoped to create a theory that also explained the electromagnetic force. He succeeded in the first bit, creating a description of how massive, charged objects might twist space-time into mini-cyclones around them. But it didn’t create a convincing description of electromagnetism, and Einstein quietly dropped the theory.

Well, the really exciting bit, as Sutter describes, is that this “teleparallel gravity” seems to be back in a big way. Many cosmologists now think it could be a silver bullet to explain away some of the most mysterious features of today’s universe, such as the nature of dark matter and dark energy and the troublesome period of faster-than-light inflation right at the moment of the big bang that is invoked to explain features of today’s universe, such as its extraordinary smoothness. Not only that, but there could be a way to test the theory soon. I’d recommend reading the feature to get all the details, but in the meantime, it’s about as exciting a development as you’ll get in cosmology these days.

Is the universe fine-tuned?

Let’s take just a quick dip into the physics arXiv preprint server, where the latest research is put up. One paper that caught my eye recently has the inviting title “Life, the universe and the hidden meaning of everything” . It’s by Zhi-Wei Wang at the College of Physics in China and Samuel L. Braunstein at the University of York in the UK, and it deals with a question that’s been bugging a lot of physicists and cosmologists ever since we started making detailed measurements of the universe and developing cogent theories to explain what we see: why does everything in the universe (the strengths of the various forces, the masses of fundamental particles, etc.) seem so perfectly tuned to allow the existence of observers like us to ask the question?

This has tended to take cosmologists and physicists down one of two avenues. The first says things are how they are because that’s how they’re made. For some, that sails very close to an argument via intelligent design, aka the existence of god. The other avenue tends to be some form of multiverse argument: our universe is as it is because we are here to observe it (we could hardly be here to observe it if it weren’t), but it is one of a random subset of many possible universes that happen to be conducive to intelligent life arising.

This paper examines more closely a hypothesis from British physicist Dennis Sciama (doctoral supervisor to the stars: among his students in the 1960s and 1970s were Stephen Hawking, quantum computing pioneer David Deutsch and the UK’s astronomer royal, Martin Rees ) that if ours were a random universe, there would be a statistical pattern in its fundamental parameters that would give us evidence of that. In this paper, the researchers argue that the logic is actually reversed. In their words: “Were our universe random, it could give the false impression of being intelligently designed, with the fundamental constants appearing to be fine-tuned to a strong probability for life to emerge and be maintained.”

Full disclosure – I’m writing something on this very subject for New Scientist’s 65th-anniversary issue, due out on 20 November. Read more there!

Closing the quantum loopholes

While I’m banging on about Einstein, I stumbled across one of my favourite features I’ve worked on while at the magazine the other day, and thought it was worth sharing. Called “Reality check: Closing the quantum loopholes”, it’s from 2011, a full 10 years ago, but the idea it deals with stretches back way before that – and is still a very live one.

The basic question is: is quantum theory a true description of reality, or are its various weirdnesses – not least the “entanglement” of quantum objects over vast distances – indications of goings-on in an underlying layer of reality not described by quantum theory (or indeed any other theory to date)? I talked about entanglement quite a bit in last month’s newsletter, so I won’t go into its workings here.

The alternative idea of “hidden variables” explaining the workings of the quantum world goes back to a famous paper published by Einstein and two collaborators, Nathan Rosen and Boris Podolsky, back in 1935. It led Einstein into a long-drawn-out debate about the nature of quantum theory with another of its pioneers, Niels Bohr, that continued decorously right until Einstein’s death in 1955. It wasn’t until the 1980s that we began to have the theoretical and experimental capabilities to actually pit the two pictures against one another.

The observatories atop the volcano Teide on Tenerife were one scene of a bold test of quantum reality.

Phil Crean A/ Alamy

I love the story not just for this rich history, but also for the way that, after each iteration of the experiments – every time showing that quantum theory, and entanglement, are the “right” explanation for what is going on, whatever they might mean – the physicists found another loophole in the experiments that might allow Einstein’s hidden variable idea back into the frame again.

That led them to some pretty impressive feats of experimental derring-do to close the loopholes again – the feature opens with a group of modern physicists shooting single photons between observatories on Tenerife and La Palma in the Canary Islands. In an update to the story that we published in 2018 (with the rather explicit title “Einstein was wrong: Why ‘normal’ physics can’t explain reality” ), they even reproduced the result with photons coming at us from galaxies billions of light years away – proving that, if not the whole universe, then a goodly proportion of it follows quantum rules. You can’t win ‘em all, Einstein.

Coming up

One reason I’ve been thinking particularly frequently about Einstein and his work lately is that I’ve been putting together the latest New Scientist Essential Guide called “Einstein’s Universe”. It’s a survey of his theories of relativity and all those things that came out of it: the big bang universe and the standard model of cosmology, dark matter and energy, gravitational waves, black holes and, of course, the search for that elusive unifying theory of physics. I’ve just putting the finishing touches to the Essential Guide with my left hand as I type this, and I think it’s a fair expectation that you’ll find me banging on about that (and Einstein) a lot more next month.

Also in New Scientist

1. Talking of fine-tuned universes, if you haven’t done so already, you can still catch up with Brian Clegg’s New Scientist Event talk, “The Patterns That Explain the Universe”, from last month, available on demand.

2. If you’re fan of big ideas (I hope that’s why you’re here) and like casting your net a little wider than just physics, then a ticket to our Big Thinkers series of live events gives you access to 10 talks from top researchers from across the board, including Harvard astronomer Avi Loeb on the search for extraterrestrial life and Michelle Simmons and John Martinis on quantum computing.

3. It happened just after my last newsletter, but it would be remiss not to mention the awarding of this year’s Nobel prize to three researchers who played a leading role in advancing our understanding of chaotic systems – notably the climate. You can find out more about what they did here.

That’s it for now. Thank you for reading! If you have any comments or questions, you can let me know by emailing me at [email protected] and I’ll try to answer them in an upcoming newsletter. If you know someone who might enjoy Lost in Space-Time, please forward it on. If you haven’t yet, you can sign up to get it in your inbox every week here.

More on these topics:

Adblock test (Why?)

728x90x4

Source link

Continue Reading

News

Here’s how Helene and other storms dumped a whopping 40 trillion gallons of rain on the South

Published

 on

 

More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.

That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.

“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”

The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.

Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.

Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.

Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.

Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.

Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.

“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”

The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.

North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.

Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”

Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.

Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.

For Dello, the “fingerprints of climate change” were clear.

“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”

___

Follow AP’s climate coverage at https://apnews.com/hub/climate

___

Follow Seth Borenstein on Twitter at @borenbears

___

Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.

Source link

Continue Reading

Science

‘Big Sam’: Paleontologists unearth giant skull of Pachyrhinosaurus in Alberta

Published

 on

 

It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.

On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.

They call it “Big Sam.”

The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.

It didn’t die alone.

“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.

She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”

“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.

The head alone, she said, is about the size of a baby elephant.

The discovery was a long time coming.

The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.

“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.

When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”

“It contains about 100 to 300 bones per square metre,” she said.

Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.

About a year ago, they found the second adult: Big Sam.

Bamforth said both dinosaurs are believed to have been the elders in the herd.

“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.

“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”

The genders of the two adults are unknown.

Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.

The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.

She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.

“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.

“It’s pretty exciting.”

This report by The Canadian Press was first published Sept. 25, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending