adplus-dvertising
Connect with us

Science

NASA's megarocket is moon-bound: 6 things to know – Mashable

Published

 on


NASA just hauled its massive heavy-lift rocket to a launchpad at Kennedy Space Center for some crucial testing ahead of its first moon mission.

It’s been a long time since the U.S. space agency had a rocket of this magnitude, capable of sending large payloads — astronauts and cargo — into deep space. Not only is the Space Launch System, or SLS, built to travel to the moon, it’s expected to one day put millions of miles on the odometer during the first crewed flight to Mars. Robotic scientific journeys to Saturn and Jupiter also could be in its future.

Here are some key facts about the megarocket as it prepares for its maiden voyage, the Artemis I mission to lunar orbit, which could come as soon as May 2022 (though, in typical NASA fashion, this might happen later this summer).

1. It’s the only rocket that can send the Orion spacecraft to the moon

NASA’s SLS is the only rocket that can send the Orion capsule directly to the moon.
Credit: NASA / Aubrey Gemignani

SLS is the only rocket capable of sending the Orion spacecraft, a capsule that sits atop the stack of boosters, to the moon and beyond. Think of the Orion capsule as the RV of the sky: It’s not only a ride but a habitat for up to four astronauts. In order to travel long journeys into deep space, people will need to be able to eat, sleep, work, and pass time aboard for months.

For Artemis I, an uncrewed Orion will fly thousands of miles past and around the moon. Three weeks after liftoff, the capsule will splash down in the Pacific Ocean. The purpose of the inaugural Artemis mission is to test its ability to safely reenter Earth’s atmosphere and drop into the correct spot for the Navy to recover.

2. It’s not the size, but the thrust, that counts

the SLS rocket's four main engines firing in a thrust test
In a NASA test, the four main rocket engines fired for eight minutes in March 2021 and generated 1.6 million pounds of thrust.
Credit: NASA / Robert Markowitz

Standing 322-feet high, the megarocket is taller than the Statue of Liberty and London’s Big Ben. Compare that to the 184-foot Space Shuttle rocket, which blasted astronauts to the space station in low-Earth orbit.

Despite towering over its predecessor, SLS is actually a bit shorter than Saturn V, the last rocket NASA used to take people into deep space. The Apollo-era rocket was 41 feet taller.

But the new rocket is demonstrably more powerful. SLS will produce 8.8 million pounds of thrust — the oomph an engine provides for the rocket — during liftoff and ascent. That’s 15 percent more than Saturn V offered. Future configurations of the new rocket will pack even more punch.

The four main SLS engines, fueled with 700,000 gallons of cryogenic, or super cold, propellant, will produce a thrust powerful enough to keep eight Boeing 747s aloft.

3. The megarocket is state-of-the-art 1980s technology

NASA building the SLS moon rocket
Engineers and technicians at NASA’s Michoud Assembly Facility in New Orleans attaching the first of four RS-25 engines to the core stage of NASA’s Space Launch System (SLS) rocket.
Credit: NASA / Jude Guidry

SLS is literally and figuratively built upon the Space Shuttle legacy. NASA incorporated major components of the shuttle, which operated between 1981 and 2011, into the new rocket.

Engineers swapped the iconic space plane out for either a cargo or Orion crew spacecraft. The central orange core is an elongated shuttle external fuel tank, powered by four shuttle engines. Rather than reusing those engines, though, NASA will ditch them in the ocean. Twin shuttle solid rocket boosters will assist the core during the first phase of the flight, providing 75 percent of the initial skyward push.

It’s not all old tech, though. NASA upgraded some hardware and used new tooling and manufacturing techniques to get the job done. Some parts have been modernized to meet the needs of deep-space travel, but Congress didn’t allow the space agency to start completely from scratch to design the latest megarocket.

4. Sorry, environment. It’s not reusable.

the Orion spacecraft traveling for three weeks on the Artemis I mission
During Artemis I, the uncrewed Orion spacecraft will launch on the most powerful rocket in the world and travel farther than any spacecraft built for humans has ever flown.
Credit: NASA

Remember that the new moon rocket is built with shuttle parts. NASA designed the shuttle to haul astronauts and supplies back and forth to the space station, which orbits some 250 miles from Earth.

In order to modify the rocket so that it could travel much deeper into space, engineers needed to lighten the load. After all, the moon is roughly 239,000 miles from Earth, around 1,000 times the distance of the space station.

Engineers gutted the Shuttle’s reusable boosters, parachutes, reserve fuel, and landing sensors from the design — the system that allowed the agency to use it again. This gave NASA back about 2,000 pounds of extra weight capacity for lunar trips. Doing so will help Orion reach 24,500 mph, the speed needed to send it on a moon-bound trajectory.

But this means SLS will need new rockets for each mission.

At least the engine exhaust is relatively “clean,” superheated water vapor. The engines are fed liquid hydrogen and liquid oxygen fuel. And NASA upgraded the booster insulation from asbestos to rubber materials, also an environmental improvement.

5. The megarocket has an all-American price tag

NASA's rocket soaring above the American flag
NASA’s Artemis missions will cost about $4.1 billion per launch, according to an inspector general report.
Credit: NASA

Many folks at NASA and in Congress refer to SLS as “the nation’s rocket,” the “flagship rocket,” or “America’s rocket.” It’s considered a national asset, not unlike a bespoke aircraft carrier for the military, intended to serve a national interest: exploring the solar system.

That’s the major reason it’s thought to be the most expensive rocket ever built. While the burgeoning commercial spaceflight sector may soon prove it can build a more cost-efficient space transportation system, affordability was never the priority for SLS.

When Congress passed a NASA spending bill in 2010, it directed the space agency to build the rocket, even specifying what parts to use, which companies to contract, and what kind of business arrangements to leverage. At that time, amid the Great Recession, those lawmakers sought to support thousands of jobs in their districts. Artemis is not just a space program, but a jobs program.

About 3,800 suppliers in all 50 states have contributed to the rocket and Orion projects, said Tom Whitmeyer, NASA’s deputy associate administrator for common exploration systems.


“When you see this rocket, it’s not just a piece of metal that’s going to sit at the pad. It’s a whole bunch of people, rocket scientists throughout this country, throughout our agencies, that have worked on this.”

“It’s a symbol of our country and our communities, our aerospace economy, and what’s in partnership behind it,” he said on a call with reporters in March. “When you see this rocket, it’s not just a piece of metal that’s going to sit at the pad. It’s a whole bunch of people, rocket scientists throughout this country, throughout our agency, that have worked on this.”

At a March congressional committee, Inspector General Paul Martin, who serves as the space agency watchdog for the federal government, estimated each launch would cost $4.1 billion, with half of the tab attributed just to SLS. For perspective, that’s about one-fifth of the entire NASA budget. By 2025, Martin expects NASA will have spent $93 billion on the Artemis program.

6. The rocket is the ultimate Transformer

NASA's rocket transforming for different missions
NASA designed the Space Launch System as the foundation for a generation of human exploration missions to deep space.
Credit: NASA

Engineers designed SLS to evolve into increasingly powerful configurations as its Artemis missions become more complex.

The first assembly, called “Block 1,” will use the central (orange) core booster with four main engines. It can send over 59,500 pounds to orbits beyond the moon. Additionally, a pair of solid rocket boosters and liquid fuel-fed engines will provide much of its thrust. After leaving Earth’s atmosphere, a final rocket booster — the Interim Cryogenic Propulsion Stage — sends the Orion capsule onward to the moon. This is the configuration NASA plans to use for the first three Artemis missions, including a moon landing.

Later missions, which will carry astronauts, will have a different rocket configuration, including the powerful Exploration Upper Stage. Known as “Block 1B,” this rocket design can transport crew and large amounts of cargo — up to 83,700 pounds.

The next iteration of SLS, aka “Block 2,” can provide 9.5 million pounds of thrust and will be the workhorse vehicle for sending cargo to the moon, Mars, and other deep-space destinations, an eight percent increase over Artemis I. This rocket will lift a whopping 101,400 pounds.

In the harsh places NASA astronauts are going, they’ll need bounties of supplies.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

News

Here’s how Helene and other storms dumped a whopping 40 trillion gallons of rain on the South

Published

 on

 

More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.

That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.

“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”

The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.

Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.

Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.

Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.

Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.

Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.

“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”

The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.

North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.

Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”

Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.

Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.

For Dello, the “fingerprints of climate change” were clear.

“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”

___

Follow AP’s climate coverage at https://apnews.com/hub/climate

___

Follow Seth Borenstein on Twitter at @borenbears

___

Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.

Source link

Continue Reading

Science

‘Big Sam’: Paleontologists unearth giant skull of Pachyrhinosaurus in Alberta

Published

 on

 

It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.

On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.

They call it “Big Sam.”

The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.

It didn’t die alone.

“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.

She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”

“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.

The head alone, she said, is about the size of a baby elephant.

The discovery was a long time coming.

The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.

“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.

When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”

“It contains about 100 to 300 bones per square metre,” she said.

Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.

About a year ago, they found the second adult: Big Sam.

Bamforth said both dinosaurs are believed to have been the elders in the herd.

“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.

“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”

The genders of the two adults are unknown.

Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.

The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.

She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.

“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.

“It’s pretty exciting.”

This report by The Canadian Press was first published Sept. 25, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending