adplus-dvertising
Connect with us

Science

Magnetic Fields Around Mars InSight are 10x Stronger than Scientists Expected – Universe Today

Published

 on


When NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (Insight) lander set down on Mars in November of 2018, it began its two-year primary mission of studying Mars’ seismology and interior environment. And now, just over a year and a half later, the results of the lander’s first twelve months on the Martian surface have been released in a series of studies.

One of these studies, which was recently published in the journal Nature Geosciences, shared some rather interesting finds about magnetic fields on Mars. According to the research team behind it, the magnetic field within the crater where InSight’s landed is ten times stronger than expected. These findings could help scientists resolve key mysteries about Mars’ formation and subsequent evolution.

These readings were obtained by InSight’s magnetic sensor, which studied the magnetic fields within the mission’s landing zone. This shallow crater, known as “Homestead hollow”, is located in the region called Elysium Planitia – a flat-smooth plain just north of the equator. This region was selected because it has the right combination of flat topology, low elevation, and low debris to allow InSight to probe deep into the interior of Mars.

Sources of magnetism detected by magnetic sensor aboard the Mars InSight Lander. Credit: NASA/JPL-Caltech

Prior to this mission, the best estimates of Martian magnetic fields came from satellites in orbit and were averaged over distances of more than 150 km (93 mi). As Catherine Johnson, a professor of Earth, Ocean, and Atmospheric Sciences at the University of British Columbia and a senior scientist at the Planetary Science Institute (PSI), was the lead author on the study. As she said in a recent UBC News story:

“One of the big unknowns from previous satellite missions was what the magnetization looked like over small areas. By placing the first magnetic sensor at the surface, we have gained valuable new clues about the interior structure and upper atmosphere of Mars that will help us understand how it – and other planets like it – formed.”

“The ground-level data give us a much more sensitive picture of magnetization over smaller areas, and where it’s coming from. In addition to showing that the magnetic field at the landing site was ten times stronger than the satellites anticipated, the data implied it was coming from nearby sources.”

Measuring magnetic fields on Mars is key to understanding the nature and strength of the global magnetic field (aka. magnetosphere) that Mars had billions of years ago. The presence of this magnetosphere has been inferred from the presence of magnetized rocks on the planet’s surface, leading to localized and relatively weak magnetic fields.

Artist’s rendering of a solar storm hitting Mars and stripping ions from the planet’s upper atmosphere. Credits: NASA/GSFC

According to data gathered by MAVEN and other missions, scientists predict that roughly 4.2 billion years ago, this magnetic field suddenly “switched off.” This resulted in solar wind slowly stripping the Martian atmosphere away over the next few hundred million years, which is what led to the surface becoming the dry and desiccated place it is today.

Because most rocks on the surface of Mars are too young to have been magnetized by this ancient field, the team thinks it must be coming from deeper underground. As Johnson explained:

“We think it’s coming from much older rocks that are buried anywhere from a couple hundred feet to ten kilometers below ground. We wouldn’t have been able to deduce this without the magnetic data and the geology and seismic information InSight has provided.”

By combining InSight data with magnetic readings obtained by Martian orbiters in the past, Johnson and her colleagues hope to be able to identify exactly which rocks are magnetized and how old they are. These efforts will be bolstered by future missions to study Martian rocks, such as NASA’s Mars 2020 rover, the ESA’s Rosalind Franklin rover, and China’s Huoxing-1 (HX-1) mission – all of which are scheduled to launch this summer.

Artist’s impression of the interaction between solar wind and the planets Mars (left) and Earth (right). Credit: NASA

InSight’s magnetometer also managed to gather data on phenomena that exist high in Mars’ upper atmosphere as well as the space environment surrounding the planet. Like Earth, Mars is exposed to solar wind, the stream of charged particles that emanate from the Sun and carry its magnetic field into interplanetary space – hence the name interplanetary magnetic field (IMF).

But since Mars lacks a magnetosphere, it is less protected from solar wind and weather events. This allows the lander to study the effects of both on the surface of the planet, which scientists have been unable to do until now. Said Johnson:

“Because all of our previous observations of Mars have been from the top of its atmosphere or even higher altitudes, we didn’t know whether disturbances in solar wind would propagate to the surface. That’s an important thing to understand for future astronaut missions to Mars.”

Another interesting find was the way the local magnetic field fluctuated between day and night, not to mention the short pulsations that occurred around midnight and lasted for just a few minutes. Johnson and her colleagues theorize that these are caused by interactions between solar radiation, the IMF, and particles in the upper atmosphere to produce electrical currents (and hence, magnetic fields).

Artist’s concept of InSight “taking the pulse of Mars”. Credit: NASA/JPL-Caltech

These readings confirm that events taking place in and above Mars’ upper atmosphere can be detected at the surface. They also provide an indirect picture of the planet’s atmospheric properties, like how charged it becomes and what currents exist in the upper atmosphere. As for the mysterious pulses, Johnson and her team are not sure what causes them but think that they are also related to how solar wind interacts with Mars.

In the future, the InSight team hopes that their efforts to gather data on the surface magnetic field will coincide with the MAVEN orbiter passing overhead, which will allow them to compare data. As InSight’s principal investigator, Bruce Banerdt of NASA’s Jet Propulsion Laboratory, summarized:

The main function of the magnetic sensor was to weed out magnetic ‘noise,’ both from the environment and the lander itself, for our seismic experiments, so this is all bonus information that directly supports the overarching goals of the mission. The time-varying fields, for example, will be very useful for future studies of the deep conductivity structure of Mars, which is related to its internal temperature.”

This study is one of six that resulted from InSight’s first year of mission data, which can be accessed here. However, this is just the beginning for the InSight mission, which will wrap up its two-year primary mission towards the end of 2020. Of particular interest are the X-band radio measurements that will show how much Mars’ “wobbles” as it spins on its axis, which in turn will help reveal the true nature of the planet’s core (solid or liquid?).

Exciting times lie ahead for the many missions we have (or will be sending) to Mars! Be sure to check out this video of the InSight mission too, courtesy of NASA JPL:

[embedded content]

Further Reading: UBC News, NASA, Nature Geoscience

Let’s block ads! (Why?)

728x90x4

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

B.C. sets up a panel on bear deaths, will review conservation officer training

Published

 on

 

VICTORIA – The British Columbia government is partnering with a bear welfare group to reduce the number of bears being euthanized in the province.

Nicholas Scapillati, executive director of Grizzly Bear Foundation, said Monday that it comes after months-long discussions with the province on how to protect bears, with the goal to give the animals a “better and second chance at life in the wild.”

Scapillati said what’s exciting about the project is that the government is open to working with outside experts and the public.

“So, they’ll be working through Indigenous knowledge and scientific understanding, bringing in the latest techniques and training expertise from leading experts,” he said in an interview.

B.C. government data show conservation officers destroyed 603 black bears and 23 grizzly bears in 2023, while 154 black bears were killed by officers in the first six months of this year.

Scapillati said the group will publish a report with recommendations by next spring, while an independent oversight committee will be set up to review all bear encounters with conservation officers to provide advice to the government.

Environment Minister George Heyman said in a statement that they are looking for new ways to ensure conservation officers “have the trust of the communities they serve,” and the panel will make recommendations to enhance officer training and improve policies.

Lesley Fox, with the wildlife protection group The Fur-Bearers, said they’ve been calling for such a committee for decades.

“This move demonstrates the government is listening,” said Fox. “I suspect, because of the impending election, their listening skills are potentially a little sharper than they normally are.”

Fox said the partnership came from “a place of long frustration” as provincial conservation officers kill more than 500 black bears every year on average, and the public is “no longer tolerating this kind of approach.”

“I think that the conservation officer service and the B.C. government are aware they need to change, and certainly the public has been asking for it,” said Fox.

Fox said there’s a lot of optimism about the new partnership, but, as with any government, there will likely be a lot of red tape to get through.

“I think speed is going to be important, whether or not the committee has the ability to make change and make change relatively quickly without having to study an issue to death, ” said Fox.

This report by The Canadian Press was first published Sept. 9, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

Science

Asteroid Apophis will visit Earth in 2029, and this European satellite will be along for the ride

Published

 on

Asteroid Apophis

The European Space Agency is fast-tracking a new mission called Ramses, which will fly to near-Earth asteroid 99942 Apophis and join the space rock in 2029 when it comes very close to our planet — closer even than the region where geosynchronous satellites sit.

Ramses is short for Rapid Apophis Mission for Space Safety and, as its name suggests, is the next phase in humanity’s efforts to learn more about near-Earth asteroids (NEOs) and how we might deflect them should one ever be discovered on a collision course with planet Earth.

In order to launch in time to rendezvous with Apophis in February 2029, scientists at the European Space Agency have been given permission to start planning Ramses even before the multinational space agency officially adopts the mission. The sanctioning and appropriation of funding for the Ramses mission will hopefully take place at ESA’s Ministerial Council meeting (involving representatives from each of ESA’s member states) in November of 2025. To arrive at Apophis in February 2029, launch would have to take place in April 2028, the agency says.

This is a big deal because large asteroids don’t come this close to Earth very often. It is thus scientifically precious that, on April 13, 2029, Apophis will pass within 19,794 miles (31,860 kilometers) of Earth. For comparison, geosynchronous orbit is 22,236 miles (35,786 km) above Earth’s surface. Such close fly-bys by asteroids hundreds of meters across (Apophis is about 1,230 feet, or 375 meters, across) only occur on average once every 5,000 to 10,000 years. Miss this one, and we’ve got a long time to wait for the next.

When Apophis was discovered in 2004, it was for a short time the most dangerous asteroid known, being classified as having the potential to impact with Earth possibly in 2029, 2036, or 2068. Should an asteroid of its size strike Earth, it could gouge out a crater several kilometers across and devastate a country with shock waves, flash heating and earth tremors. If it crashed down in the ocean, it could send a towering tsunami to devastate coastlines in multiple countries.

Over time, as our knowledge of Apophis’ orbit became more refined, however, the risk of impact  greatly went down. Radar observations of the asteroid in March of 2021 reduced the uncertainty in Apophis’ orbit from hundreds of kilometers to just a few kilometers, finally removing any lingering worries about an impact — at least for the next 100 years. (Beyond 100 years, asteroid orbits can become too unpredictable to plot with any accuracy, but there’s currently no suggestion that an impact will occur after 100 years.) So, Earth is expected to be perfectly safe in 2029 when Apophis comes through. Still, scientists want to see how Apophis responds by coming so close to Earth and entering our planet’s gravitational field.

“There is still so much we have yet to learn about asteroids but, until now, we have had to travel deep into the solar system to study them and perform experiments ourselves to interact with their surface,” said Patrick Michel, who is the Director of Research at CNRS at Observatoire de la Côte d’Azur in Nice, France, in a statement. “Nature is bringing one to us and conducting the experiment itself. All we need to do is watch as Apophis is stretched and squeezed by strong tidal forces that may trigger landslides and other disturbances and reveal new material from beneath the surface.”

The Goldstone radar’s imagery of asteroid 99942 Apophis as it made its closest approach to Earth, in March 2021. (Image credit: NASA/JPL–Caltech/NSF/AUI/GBO)

By arriving at Apophis before the asteroid’s close encounter with Earth, and sticking with it throughout the flyby and beyond, Ramses will be in prime position to conduct before-and-after surveys to see how Apophis reacts to Earth. By looking for disturbances Earth’s gravitational tidal forces trigger on the asteroid’s surface, Ramses will be able to learn about Apophis’ internal structure, density, porosity and composition, all of which are characteristics that we would need to first understand before considering how best to deflect a similar asteroid were one ever found to be on a collision course with our world.

Besides assisting in protecting Earth, learning about Apophis will give scientists further insights into how similar asteroids formed in the early solar system, and, in the process, how  planets (including Earth) formed out of the same material.

One way we already know Earth will affect Apophis is by changing its orbit. Currently, Apophis is categorized as an Aten-type asteroid, which is what we call the class of near-Earth objects that have a shorter orbit around the sun than Earth does. Apophis currently gets as far as 0.92 astronomical units (137.6 million km, or 85.5 million miles) from the sun. However, our planet will give Apophis a gravitational nudge that will enlarge its orbit to 1.1 astronomical units (164.6 million km, or 102 million miles), such that its orbital period becomes longer than Earth’s.

It will then be classed as an Apollo-type asteroid.

Ramses won’t be alone in tracking Apophis. NASA has repurposed their OSIRIS-REx mission, which returned a sample from another near-Earth asteroid, 101955 Bennu, in 2023. However, the spacecraft, renamed OSIRIS-APEX (Apophis Explorer), won’t arrive at the asteroid until April 23, 2029, ten days after the close encounter with Earth. OSIRIS-APEX will initially perform a flyby of Apophis at a distance of about 2,500 miles (4,000 km) from the object, then return in June that year to settle into orbit around Apophis for an 18-month mission.

Related Stories:

Furthermore, the European Space Agency still plans on launching its Hera spacecraft in October 2024 to follow-up on the DART mission to the double asteroid Didymos and Dimorphos. DART impacted the latter in a test of kinetic impactor capabilities for potentially changing a hazardous asteroid’s orbit around our planet. Hera will survey the binary asteroid system and observe the crater made by DART’s sacrifice to gain a better understanding of Dimorphos’ structure and composition post-impact, so that we can place the results in context.

The more near-Earth asteroids like Dimorphos and Apophis that we study, the greater that context becomes. Perhaps, one day, the understanding that we have gained from these missions will indeed save our planet.

 

728x90x4

Source link

Continue Reading

Trending