adplus-dvertising
Connect with us

Science

Seeking answers to the mysteries of Mars – University of Alberta

Published

 on

Perseverance, a NASA rover, is collecting rocks on the surface of Mars, more than 200 million kilometres away. Though they could eventually become the most valuable rocks on Earth, the rover has limited space for these samples. That’s where “return sample scientists” such as Chris Herd come in, lending their expertise to determine which samples could answer the greatest number of questions about Mars and further our understanding of the planet, including whether it has ever harboured life.

The highest quality samples are sealed and stored airtight on Perseverance, to await study on Earth in the future. A backup of each sample remains in a depot on Mars.

“The rovers have to be cleaned to a certain standard, and the sample tubes we send are probably the cleanest things that humanity has ever sent anywhere,” says Herd, a professor in the Department of Earth & Atmospheric Sciences and curator of the University of Alberta’s Meteorite Collection. This is to ensure that no contaminants or signatures of life from Earth make their way into the Martian samples.

Each tube contains a sample of about 10 grams, and the rover has capacity to fill, seal and store 38 sample tubes; the follow on mission can bring only 30 back. So, return sample scientists need to be selective about what samples they capture. Once the tubes return to Earth, only a certain percentage of each may be used for analysis — the remainder must be curated and archived.

Modern technology and innovative tools mean the limited sample materials available shouldn’t be an issue. “We make the most of the least amount of material. We have an incredible array of instrumentation that allows us to do that,” Herd says. “There are ways we can analyze a sample that give us unprecedented detail about when the rock formed, how it was modified, whether there’s any organic matter that could be evidence of life. There’s a host of things we can tell from tiny amounts.”

Selecting information-rich samples

Return sample scientists take various priorities into account when determining which samples to preserve in the tubes. They also consider the practicalities of what’s available to sample once the rover reaches a particular site. The larger mission is broken down into smaller campaigns, each campaign targeting three to five samples.

Within three weeks of each sampling event, return sample scientists must complete a report that details “everything from the map view to the outcrop to the details of what we’ve learned about the rock as we sample it,” Herd explains.

While researchers on Earth already have samples of at least 175 Martian meteorites, they tend to provide a snapshot of a younger Mars, having been ejected from the planet after violent impacts early in its existence. Consequently they don’t offer a full picture of what has been happening on the planet since.

But Perseverance has already gathered igneous and sedimentary samples from sites in Jezero Crater. Researchers will compare the igneous samples obtained by the rover to some of those existing meteorite samples we already have on Earth, deepening our understanding of Mars. The sedimentary samples will fill a gap in our knowledge about Martian geology, as we currently have no sedimentary rocks from there.

“Those are even more interesting from an ancient biology perspective,” Herd says. “That’s the reason we went to this landing site, because the rocks were laid down by liquid water some three and a half billion years ago and could preserve evidence of ancient life.”

Tools aboard Perseverance record the location of samples, provide insights into what the rocks are made of, and gather information about the environment each one is from, giving researchers invaluable context. Once sampling from Jezero Crater is complete, Herd estimates the team will have about half the available sample capacity remaining, to be used as the rover drives up and out of the crater.

“Each of those 15 or 16 samples could be unique and could represent a bigger range of ages and rock types than we’ve seen inside the crater.”

The return to Earth

It won’t be easy to bring the samples back to Earth. The task needs a lander (a spacecraft that can land on and leave a planetary surface), a rocket, and the ability to rendezvous with an orbiting interplanetary spacecraft. And on Earth, researchers need to be ready to handle the samples.

“There’s a lot that we have to do to make sure we don’t contaminate the samples with signatures of life from Earth and misinterpret that signature as life on Mars,” Herd says. He says it’s hard to imagine retrofitting an existing facility to house and study the samples appropriately and safely. Instead, he says a tailor-made facility could protect the samples from Earthly contaminants, while ensuring that our environment is safe from potentially harmful Martian contaminants. “We need to get this right,” he says, “because this is answering a huge question.”

“There’s still a non-zero probability that there’s extant life that has somehow managed to survive on Mars,” Herd adds. This slim chance is due to the history of Mars, and it “being warmer and wetter in the past and having that potential for microbial life.”

While there are still several years to wait until researchers can get their hands on the samples for analysis, the process is just as satisfying as the eventual payoff may be, according to Herd.

“It’s absolutely phenomenal for me to be involved in such a huge mission, where we get to explore and get information about the rocks and the geology while at the same time sampling and looking forward to bringing those samples back,” Herd says. “That’s what sets this mission apart.”

 

728x90x4

Source link

Continue Reading

News

Here’s how Helene and other storms dumped a whopping 40 trillion gallons of rain on the South

Published

 on

 

More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.

That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.

“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”

The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.

Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.

Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.

Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.

Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.

Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.

“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”

The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.

North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.

Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”

Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.

Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.

For Dello, the “fingerprints of climate change” were clear.

“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”

___

Follow AP’s climate coverage at https://apnews.com/hub/climate

___

Follow Seth Borenstein on Twitter at @borenbears

___

Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.

Source link

Continue Reading

Science

‘Big Sam’: Paleontologists unearth giant skull of Pachyrhinosaurus in Alberta

Published

 on

 

It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.

On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.

They call it “Big Sam.”

The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.

It didn’t die alone.

“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.

She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”

“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.

The head alone, she said, is about the size of a baby elephant.

The discovery was a long time coming.

The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.

“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.

When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”

“It contains about 100 to 300 bones per square metre,” she said.

Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.

About a year ago, they found the second adult: Big Sam.

Bamforth said both dinosaurs are believed to have been the elders in the herd.

“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.

“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”

The genders of the two adults are unknown.

Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.

The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.

She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.

“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.

“It’s pretty exciting.”

This report by The Canadian Press was first published Sept. 25, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending