adplus-dvertising
Connect with us

Science

Threatening our future in space – The Queens County Citizen

Published

 on


Debris and non-functioning launcher steps in the geostationary ring. Aging satellites emit debris and explode due to residual energy sources. The resulting fragments can be thrown back and cross geostationary orbit. For this reason, the release of residual energy after the completion of the nominal mission is fundamental. ESA / ID & Sense / ONiRiXEL, CC BY-SA 3.0 IGO

Fragments of past space efforts are trapped in orbit around the Earth, threatening our future in space. Over time, the number, mass, and area of ​​these debris objects gradually increase, which increases the performance of the satellites.

The ESA’s Office of Space Debris constantly monitors the condition of these ever-evolving debris and publishes a current report each year. The condition of the debris atmosphere.

Since the beginning of the space age in 1957, tons of rockets, spaceships and equipment have been launched into space. Initially, they had no plan of what to do with them at the end of their lives. Since then, the numbers have continued to rise and millions of dangerous debris have formed from explosions and collisions in space.

Space Debris Danger

Despite advances in technology, the need to significantly increase the speed of understanding the space environment and implementing the proposed measures to reduce debris creation was recognized at the largest space debris conference ever held in Europe. Credit: ESA, CC BY-SA 3.0 IGO

“Explosions in orbit, the largest contributor to the current space debris problem, are caused by residual energy – fuel and batteries – onboard spacecraft and rockets. Despite years of efforts to prevent this, the number of such incidents has not decreased. Trends toward end-of-mission disposal are improving, but slowly, ”Said Holger Craig, head of the Space Safety Program.

.uf7a1a51628ed8de2dd314d9595ce3f7epadding:0;margin:0;padding-top:1em!important;padding-bottom:1em!important;width:100%;display:block;font-weight:700;background-color:inherit;border:0!important;border-left:4px solid inherit!important;text-decoration:none.uf7a1a51628ed8de2dd314d9595ce3f7e:active,.uf7a1a51628ed8de2dd314d9595ce3f7e:hoveropacity:1;transition:opacity 250ms;webkit-transition:opacity 250ms;text-decoration:none.uf7a1a51628ed8de2dd314d9595ce3f7etransition:background-color 250ms;webkit-transition:background-color 250ms;opacity:1;transition:opacity 250ms;webkit-transition:opacity 250ms.uf7a1a51628ed8de2dd314d9595ce3f7e .ctaTextfont-weight:700;color:inherit;text-decoration:none;font-size:16px.uf7a1a51628ed8de2dd314d9595ce3f7e .postTitlecolor:inherit;text-decoration:underline!important;font-size:16px.uf7a1a51628ed8de2dd314d9595ce3f7e:hover .postTitletext-decoration:underline!important

READ  Lesotho Prime Minister Thomas Thabane resigns

“In view of the constant increase in space-traffic, we must develop and provide technology to prevent debris mitigation efforts, and the ESA is doing so through its space safety program. In parallel, regulators need to monitor the status of space systems, as well as the global commitment to debris mitigation within their jurisdiction.

International guidelines and standards now exist, which clarify how we can achieve sustainable use of space:

  • Build rockets and spacecraft to reduce the amount of ‘shedding’ – the material is separated during launch and operation, due to the harsh conditions of space
  • Avoid explosions by releasing stored energy, the ‘passivating’ spaceship once in a lifetime
  • Move useless missions into the path of working satellites – by placing them in de-orbit or by moving them to ‘graveyard orbit’.
  • Avoid space hazards by carefully selecting orbits and performing ‘collision avoidance stunts’.

Many space agencies, private companies and other space actors are changing their behavior to adhere to these guidelines – but is it enough?

Worrying trends

Evolution in all orbits

The objects we send into orbit take up the same space as the debris they create. The growing area of ​​objects in space dramatically increases the probability of a collision. Red (PL) = payload; Orange (RB) = rocket body; Dark green (RM) = rocket mission related object. Credit: ESA

The number of debris objects, their composite mass and the total area they take up have been steadily increasing since the beginning of the space age. This is further fueled by the fact that a large number of spacecraft and rocket phases break down into orbit.

.u026ddf0dce5477b47a0b3d2f7d17139bpadding:0;margin:0;padding-top:1em!important;padding-bottom:1em!important;width:100%;display:block;font-weight:700;background-color:inherit;border:0!important;border-left:4px solid inherit!important;text-decoration:none.u026ddf0dce5477b47a0b3d2f7d17139b:active,.u026ddf0dce5477b47a0b3d2f7d17139b:hoveropacity:1;transition:opacity 250ms;webkit-transition:opacity 250ms;text-decoration:none.u026ddf0dce5477b47a0b3d2f7d17139btransition:background-color 250ms;webkit-transition:background-color 250ms;opacity:1;transition:opacity 250ms;webkit-transition:opacity 250ms.u026ddf0dce5477b47a0b3d2f7d17139b .ctaTextfont-weight:700;color:inherit;text-decoration:none;font-size:16px.u026ddf0dce5477b47a0b3d2f7d17139b .postTitlecolor:inherit;text-decoration:underline!important;font-size:16px.u026ddf0dce5477b47a0b3d2f7d17139b:hover .postTitletext-decoration:underline!important

READ  Samsung Galaxy Z Fold 2 Review: The world is waiting to change

The total area taken up by space debris is important because it is directly related to how many collisions we have in the future. As things stand, collisions between debris and working satellites are thought to outweigh explosions as a major source of debris.

No fragmentation events

There are many ways to create debris in space. Thousands of hazardous debris can be added to Earth’s orbit for each “fragmentation event”. Credit: ESA

Incidents that create debris have become commonplace

On average over the past two decades, 12 accidental ‘fragmentations’ have occurred in space each year – and this trend is unfortunately on the rise. Fragmentation events describe the moments when debris is created by collisions, explosions, electrical problems, and the separation of objects due to harsh conditions in space.

The bright side

Payloads clearance is low Earth orbit

More satellites or “payloads” sent into low Earth orbit are trying to adhere more consistently to debris mitigation than 20 years ago. However, progress is still very slow. Credit: ESA

Attempts to follow the rules (not yet matched)

Although not all satellites currently comply with international guidelines, most space actors are trying to comply with the regulations. Over the past decade, 15-30% of objects, or ‘payloads’ launched into non-compliant orbits in low-Earth orbit (excluding spacecraft for human spaceflight) have attempted to comply with debris mitigation measures. It was successful between 5% and 20%, reaching 35% in 2018 due to being in active orbit from the Iridium Alliance.

Rocket Bodies Clearance Low Earth Orbit

80% of rockets launched now attempt to clear low-Earth orbit – most of which successfully – more than just 20% at the turn of the millennium. Credit: ESA

More rockets are being safely disposed of

When it comes to rockets, most are consistently disposed of. Between 40 and 80% of those in non-compliant low-Earth orbit during this decade have attempted to comply with debris mitigation measures. Overall, it successfully cleared 30-70% of low-Earth orbit in naturally non-compliant rockets.

Of all the rockets launched in the last decade, 60-80% (in terms of mass) are committed to mitigation measures. Some rockets are in low-Earth orbit, which causes them to naturally decline in the Earth’s atmosphere, but a significant amount of rockets are redirected back into the Earth’s atmosphere, where they burn up or re-enter uninhabited areas. Such practices are on the rise, with 30% of rockets safely entering re-controlled mode from 2017 onwards.

This is very good news. Rocket bodies are one of the biggest objects we send into space and are at risk of getting caught in catastrophic collisions. A maximum of 24 hours after the launch, all measures must be taken to ensure that they are not delayed in orbit.

Payload launch traffic

Due to the increase in satellite constellations, the number of small satellites entering near-Earth orbit has increased dramatically in the last 10 years. Credit: ESA

Most satellites are in low altitude orbit, where they burn naturally

The amount of ‘small traffic’ into the low Earth orbit protected area – at an altitude of 2000 km – is changing significantly, especially due to the proliferation of smaller satellites and constellations.

Approximately 88% of the small payloads introduced in this region naturally adhere to space debris reduction measures because they are at low altitudes, i.e. they decompose in the Earth’s atmosphere.

It is estimated that between 30-60% of the total satellite mass (excluding human spaceflight) will adhere to life-end guidelines for the same reason.

“The rapid growth of satellites launched into low-Earth orbit is evident in our latest report,” explained Tim Florer, head of the ESA’s space debris office.

“We have observed fundamental changes in the way space is used. In order to continue to benefit from the science, technology and data that work in space, it is essential to achieve better compliance with existing space debris mitigation guidelines in spacecraft design and operations. This cannot be stressed enough – it is essential for the sustainable use of space. ”

Payload clearance near FEO

In recent years, all satellites in geostationary orbit have attempted to exit responsibly after reaching the end of their mission. Credit: ESA

High rates of debris reduction in geostationary orbit

Satellites launched into geostationary protection, at an altitude of 35,586 – 35,986 km, are much more likely to adhere to debris mitigation measures. Between 85% and 100% of those approaching the end of their lives this decade have tried to conform to these measures, of which 60 – 90% have been successful.

In geostationary orbit, operators have a clear commercial interest in keeping their routes away from useless satellites and debris – otherwise their spacecraft and bottom line could be in serious danger.

What now?

A systematic analysis of changing behaviors in space provides reasons to be cautiously optimistic when adopting debris mitigation measures – something that did not happen a decade ago.

If adapted quickly, continuous investment in new technologies to deactivate and dispose of missions will allow our environment to cope with the continuous growth of space traffic and more complex operations.

Space debris around the Earth

Distribution of space debris around the Earth. Credit: ESA

We must consider the space environment as a shared and limited natural resource. The continuous creation of space debris leads to Kessler syndrome, when when the density of objects in low Earth orbit is sufficient, the collision between objects and debris creates a cascade effect, each crash producing debris, which then increases the chance of further collision. At this point, some orbits around the Earth become completely homeless.

ESA is actively working to support guidelines for the long-term sustainability of outer space operations from the UN Committee on the Peaceful Uses of U-Space, funding the world’s first mission to remove part of the debris from orbit, internationally creating space sustainability rating and collision evasion automation. Since develops technology to reduce the impact on our environment.

The agency’s upcoming meeting on ESA’s space debris and clean space offices and the space debris – the largest in the world – is taking place in April 2021 as part of the space security program.

Let’s block ads! (Why?)

728x90x4

Source link

Continue Reading

News

Here’s how Helene and other storms dumped a whopping 40 trillion gallons of rain on the South

Published

 on

 

More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.

That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.

“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”

The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.

Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.

Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.

Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.

Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.

Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.

“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”

The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.

North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.

Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”

Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.

Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.

For Dello, the “fingerprints of climate change” were clear.

“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”

___

Follow AP’s climate coverage at https://apnews.com/hub/climate

___

Follow Seth Borenstein on Twitter at @borenbears

___

Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.

Source link

Continue Reading

Science

‘Big Sam’: Paleontologists unearth giant skull of Pachyrhinosaurus in Alberta

Published

 on

 

It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.

On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.

They call it “Big Sam.”

The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.

It didn’t die alone.

“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.

She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”

“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.

The head alone, she said, is about the size of a baby elephant.

The discovery was a long time coming.

The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.

“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.

When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”

“It contains about 100 to 300 bones per square metre,” she said.

Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.

About a year ago, they found the second adult: Big Sam.

Bamforth said both dinosaurs are believed to have been the elders in the herd.

“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.

“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”

The genders of the two adults are unknown.

Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.

The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.

She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.

“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.

“It’s pretty exciting.”

This report by The Canadian Press was first published Sept. 25, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending