adplus-dvertising
Connect with us

Science

“A Big Unknown” –New Phenomenon of Repeating ‘Clockwork’ Rhythm of Radio Waves – The Daily Galaxy –Great Discoveries Channel

Published

 on


Neutron Star

A new fast radio burst (FRB) appears like clockwork, seeming to follow a mathematical pattern, says Kiyoshi Masui, assistant professor of physics in MIT’s Kavli Institute for Astrophysics and Space Research about a 16-day pattern of fast radio bursts reoccurring consistently over 500 days of observations from an unknown source outside our galaxy, 500 million light years away.

“It’s the most definitive pattern we’ve seen from one of these sources. And it’s a big clue that we can use to start hunting down the physics of what’s causing these bright flashes, which nobody really understands. These periodic bursts are something that we’ve never seen before, and it’s a new phenomenon in astrophysics,” Masui says.

300x250x1

The first FRB, the so-called Lorimer Burst (FRB 010724) was detected only a decade ago, leading some astronomers to speculate that they may be signatures of distant technology. Harvard’s Avi Loeb suggested in a 2017 paper that we could conceivably be dealing with an engineering phenomenon rather than a natural one.

This new source of curious, repeating rhythm of fast radio waves emanating FRB 180916.J0158+65, is the first to produce a periodic, or cyclical pattern beginning with a noisy, four-day window, during which the source emits random bursts, followed by a 12-day period of radio silence.

Baffling Enigma of FRBs –“Artificial Origin is Worth Exploring”

Fast radio bursts, or FRBs, are short, intense flashes of radio waves that are thought to be the product of small, distant, extremely dense objects, though exactly what those objects might be is a longstanding mystery in astrophysics. FRBs typically last a few milliseconds, during which time they can outshine entire galaxies.

FRBs Detected in Past Were One-Offs

Since the first FRB was observed in 2007, astronomers have cataloged over 100 fast radio bursts from distant sources scattered across the universe, outside our own galaxy. For the most part, these detections were one-offs, flashing briefly before disappearing entirely. In a handful of instances, astronomers observed fast radio bursts multiple times from the same source, though with no discernible pattern.

Masui is a member of the CHIME/FRB collaboration, a group of more than 50 scientists led by the University of British Columbia, McGill University, University of Toronto, and the National Research Council of Canada, that operates and analyzes the data from the Canadian Hydrogen Intensity Mapping Experiment, or CHIME, a radio telescope in British Columbia that was the first to pick up signals of the new periodic FRB source. The CHIME/FRB Collaboration has published the details of the new observation today in the journal Nature.

Unknown Phenomena –“Repeating FRB’s Formed by Events Never Seen Before”

In 2017, CHIME was erected at the Dominion Radio Astrophysical Observatory in British Columbia, where it quickly began detecting fast radio bursts from galaxies across the universe, billions of light years from Earth.

CHIME consists of four large antennas, each about the size and shape of a snowboarding half-pipe, and is designed with no moving parts. Rather than swiveling to focus on different parts of the sky, CHIME stares fixedly at the entire sky, using digital signal processing to pinpoint the region of space where incoming radio waves are originating.

38 FRBs from a Single Source

From September 2018 to February 2020, CHIME picked out 38 fast radio bursts from a single source, FRB 180916.J0158+65, which the astronomers traced to a star-churning region on the outskirts of a massive spiral galaxy, 500 million light years from Earth. The source is the most active FRB source that CHIME has yet detected, and until recently it was the closest FRB source to Earth.

As the researchers plotted each of the 38 bursts over time, a pattern began to emerge: One or two bursts would occur over four days, followed by a 12-day period without any bursts, after which the pattern would repeat. This 16-day cycle occurred again and again over the 500 days that they observed the source.

A Big Unknown

Exactly what phenomenon is behind this new extragalactic rhythm is a big unknown, although the team explores some ideas in their new paper.

One possibility is that the periodic bursts may be coming from a single compact object, such as a neutron star, that is both spinning and wobbling—an astrophysical phenomenon known as precession. Assuming that the radio waves are emanating from a fixed location on the object, if the object is spinning along an axis and that axis is only pointed toward the direction of Earth every four out of 16 days, then we would observe the radio waves as periodic bursts.

Another possibility involves a binary system, such as a neutron star orbiting another neutron star or black hole. If the first neutron star emits radio waves, and is on an eccentric orbit that briefly brings it close to the second object, the tides between the two objects could be strong enough to cause the first neutron star to deform and burst briefly before it swings away. This pattern would repeat when the neutron star swings back along its orbit.

Cloud Emitting Stars?

The researchers considered a third scenario, involving a radio-emitting source that circles a central star. If the star emits a wind, or cloud of gas, then every time the source passes through the cloud, the gas from the cloud could periodically magnify the source’s radio emissions.

“Maybe the source is always giving off these bursts, but we only see them when it’s going through these clouds, because the clouds act as a lens,” Masui says.

Mystery Known as Magnetars?

Perhaps the most exciting possibility is the idea that this new FRB, and even those that are not periodic or even repeating, may originate from magnetars—a type of neutron star that is thought to have an extremely powerful magnetic field. The particulars of magnetars are still a bit of a mystery, but astronomers have observed that they do occasionally release massive amounts of radiation across the electromagnetic spectrum, including energy in the radio band.

“People have been working on how to make these magnetars emit fast radio bursts, and this periodicity we’ve observed has since been worked into these models to figure out how this all fits together,” Masui says.

Very recently, the same group made a new observation that supports the idea that magnetars may in fact be a viable source for fast radio bursts. In late April, CHIME picked up a signal that looked like a fast radio burst, coming from a flaring magnetar, some 30,000 light years from Earth. If the signal is confirmed, this would be the first FRB detected within our own galaxy, as well as the most compelling evidence of magnetars as a source of these mysterious cosmic sparks.

Source: Amiri, M., Andersen, B., Bandura, K. et al. Periodic activity from a fast radio burst source. Nature 582, 351–355 (2020). doi.org/10.1038/s41586-020-2398-2

The Daily Galaxy, Max Goldberg, via Massachusetts Institute of Technology

Image credit: neutron star, Shutterstock

Let’s block ads! (Why?)

728x90x4

Source link

Continue Reading

Science

Giant prehistoric salmon had tusk-like teeth for defence, building nests

Published

 on

The artwork and publicity materials showcasing a giant salmon that lived five million years ago were ready to go to promote a new exhibit, when the discovery of two fossilized skulls immediately changed what researchers knew about the fish.

Initial fossil discoveries of the 2.7-metre-long salmon in Oregon in the 1970s were incomplete and had led researchers to mistakenly suggest the fish had fang-like teeth.

It was dubbed the “sabre-toothed salmon” and became a kind of mascot for the Museum of Natural and Cultural History at the University of Oregon, says researcher Edward Davis.

But then came discovery of two skulls in 2014.

300x250x1

Davis, a member of the team that found the skulls, says it wasn’t until they got back to the lab that he realized the significance of the discovery that has led to the renaming of the fish in a new, peer-reviewed study.

“There were these two skulls staring at me with sideways teeth,” says Davis, an associate professor in the department of earth sciences at the university.

In that position, the tusk-like teeth could not have been used for biting, he says.

“That was definitely a surprising moment,” says Davis, who serves as director of the Condon Fossil Collection at the university’s Museum of Natural and Cultural History.

“I realized that all of the artwork and all of the publicity materials and bumper stickers and buttons and T-shirts we had just made two months prior, for the new exhibit, were all out of date,” he says with a laugh.

Davis is co-author of the new study in the journal PLOS One, which renames the giant fish the “spike-toothed salmon.”

It says the salmon used the tusk-like spikes for building nests to spawn, and as defence mechanisms against predators and other salmon.

The salmon lived about five million years ago at a time when Earth was transitioning from warmer to relatively cooler conditions, Davis says.

It’s hard to know exactly why the relatives of today’s sockeye went extinct, but Davis says the cooler conditions would have affected the productivity of the Pacific Ocean and the amount of rain feeding rivers that served as their spawning areas.

Another co-author, Brian Sidlauskas, says a fish the size of the spike-toothed salmon must have been targeted by predators such as killer whales or sharks.

“I like to think … it’s almost like a sledgehammer, these salmon swinging their head back and forth in order to fend off things that might want to feast on them,” he says.

Sidlauskas says analysis by the lead author of the paper, Kerin Claeson, found both male and female salmon had the “multi-functional” spike-tooth feature.

“That’s part of our reason for hypothesizing that this tooth is multi-functional … It could easily be for digging out nests,” he says.

“Think about how big the (nest) would have to be for an animal of this size, and then carving it out in what’s probably pretty shallow water; and so having an extra digging tool attached to your head could be really useful.”

Sidlauskas says the giant salmon help researchers understand the boundaries of what’s possible with the evolution of salmon, but they also capture the human imagination and a sense of wonder about what’s possible on Earth.

“I think it helps us value a little more what we do still have, or I hope that it does. That animal is no longer with us, but it is a product of the same biosphere that sustains us.”

This report by The Canadian Press was first published April 24, 2024.

Brenna Owen, The Canadian Press

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Giant prehistoric salmon had tusk-like spikes used for defence, building nests: study

Published

 on

A new paper says a giant salmon that lived five million years ago in the coastal waters of the Pacific Northwest used tusk-like spikes as defense mechanisms and for building nests to spawn.

The initial fossil discoveries of the 2.7-metre-long salmon in Oregon in the 1970s were incomplete and led researchers to suggest the fish had fang-like teeth.

The now-extinct fish was dubbed the “saber-tooth salmon,” but the study published in the peer-reviewed journal PLOS One today renames it the “spike-toothed salmon” and says both males and females possessed the “multifunctional” feature.

Study co-author Edward Davis says the revelation about the tusk-like teeth came after the discovery of fossilized skulls at a site in Oregon in 2014.

300x250x1

Davis, an associate professor in the department of earth sciences at the University of Oregon, says he was surprised to see the skulls had “sideways teeth.”

Contrary to the belief since the 1970s, he says the teeth couldn’t have been used for any kind of biting.

“That was definitely a surprising moment,” Davis says of the fossil discovery in 2014. “I realized that all of the artwork and all of the publicity materials … we had just made two months prior, for the new exhibit, were all out of date.”

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

SpaceX sends 23 Starlink satellites into low-Earth orbit

Published

 on

April 23 (UPI) — SpaceX launched 23 Starlink satellites into low-Earth orbit Tuesday evening from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.

Liftoff occurred at 6:17 EDT with a SpaceX Falcon 9 rocket sending the payload of 23 Starlink satellites into orbit.

The Falcon 9 rocket’s first-stage booster landed on an autonomous drone ship in the Atlantic Ocean after separating from the rocket’s second stage and its payload.

The entire mission was scheduled to take about an hour and 5 minutes to complete from launch to satellite deployment.

300x250x1

The mission was the ninth flight for the first-stage booster that previously completed five Starlink satellite-deployment missions and three other missions.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Trending