Connect with us

Science

Astronaut craves salsa and surf after record 11 months aloft – World News – Castanet.net

Published

 on


After nearly 11 months in orbit, the astronaut holding the record for the longest spaceflight by a woman can’t wait to dig into some salsa and chips, and swim and surf in the Gulf of Mexico.

NASA astronaut Christina Koch told The Associated Press on Tuesday — her 319th consecutive day in space — that taking part in the first all-female spacewalk was the highlight of her mission. She’s been living on the International Space Station since March and returns to Earth on Feb. 6, landing in Kazakhstan with two colleagues aboard a Russian capsule.

Genius Dog 336 x 280 - Animated

Koch said she and fellow NASA astronaut Jessica Meir appreciated that the Oct. 18 spacewalk “could serve as an inspiration for future space explorers.”

“We both drew a lot of inspiration from seeing people that were reflections of ourselves as we were growing up and developing our dreams to become astronauts,” Koch said from the space station. “So to recognize that maybe we could pay that forward and serve the same for those that are up and coming was just such a highlight.”

Koch’s astronaut class of 2013 was split equally between women and men, but NASA’s astronaut corps as a whole is male dominated. Right now, four men and two women are living at the space station.

“Diversity is important, and I think it is something worth fighting for,” said Koch, an electrical engineer who also has a physics degree.

Koch’s 328-day mission will be the second-longest by an American, trailing Scott Kelly’s flight by 12 days. She’s already set a record for the longest single spaceflight by a woman.

She took time out for a pair of news interviews Tuesday, the 34th anniversary of the space shuttle Challenger accident that claimed all seven lives on board.

She said she loves her work — she conducted six spacewalks and tended to science experiments — but she also misses her friends and family.

“If they could visit here, I would continue staying for a very long time,” said Koch, a first-time space flier. “For their sake, I think that it’s probably time to head home.”

Why do chips and salsa top her most-missed food list? Crunchy food like chips are banned on the space station because the crumbs could float away and clog equipment. “I haven’t had chips in about 10 1/2 months,” she explained, “but I have had a fresh apple” thanks to regular cargo deliveries.

Let’s block ads! (Why?)



Source link

Continue Reading

Science

Discovery Of World's Oldest DNA Breaks Record By One Million Years – Forbes

Published

 on


Microscopic fragments of DNA were found in Ice Age sediment in northern Greenland. Using cutting-edge technology, researchers discovered the fragments are one million years older than the previous record for DNA sampled from a Siberian mammoth bone.

The discovery was made by a team of scientists led by Professor Eske Willerslev and Professor Kurt H. Kjær. Professor Willerslev is a Fellow of St John’s College, University of Cambridge, and Director of the Lundbeck Foundation GeoGenetics Center at the University of Copenhagen where Professor Kjær, a geology expert, is also based.

“A new chapter spanning one million extra years of history has finally been opened and for the first time we can look directly at the DNA of a past ecosystem that far back in time,” so Professor Willerslev commenting the discovery.

Genius Dog 336 x 280 - Animated

“DNA can degrade quickly but we’ve shown that under the right circumstances, we can now go back further in time than anyone could have dared imagine.”

Professor Kjær adds that “the ancient DNA samples were found buried deep in sediment that had built-up over 20,000 years. The sediment was eventually preserved in ice or permafrost and, crucially, not disturbed by humans for two million years.”

The incomplete samples, a few millionths of a millimeter long DNA strings, were taken from the København Formation, a sediment formation almost 100 meters thick deposited in the shallow area of a fjord in Greenland’s northernmost point. The climate in Greenland at the time of sedimentation was between 10 to 17 degrees warmer than today, sustaining an ecosystem with no present-day equivalent, resembling a mix of temperate forest and mixed-grass prairie.

Detective work by 40 researchers from Denmark, the UK, France, Sweden, Norway, the U.S. and Germany, unlocked the secrets of the fragments of DNA. The process was painstaking – first they needed to establish whether there was DNA hidden in the sediment, and if there was, could they successfully detach the DNA from the mineral grains – like clay particles and quartz crystals – to examine it? The answer, eventually, was yes. The researchers compared every single DNA fragment with extensive libraries of DNA collected from present-day animals, plants and microorganisms.

The scientists discovered evidence of animals, plants and microorganisms including reindeer, hares, lemmings, birch and poplar trees. They even found that Mastodon, an Ice Age elephant, roamed as far as Greenland before later becoming extinct. Previously it was thought the range of the species did not extend from its known origins of North and Central America.

Some of the DNA fragments were easy to classify as predecessors to present-day species, others could only be linked at genus level, and some originated from species impossible to place in the DNA libraries of animals, plants and microorganisms still living today.

The findings have opened up a whole new period in DNA detection. Thanks to a new generation of extraction and sequencing equipment, researchers will be able to locate and identify extremely small and damaged fragments of genetic information in sediments considered previously unfit for DNA preservation.

“DNA generally survives best in cold, dry conditions such as those that prevailed during most of the period since the material was deposited at Kap København. Now that we have successfully extracted ancient DNA from clay and quartz, it may be possible that clay may have preserved ancient DNA in warm, humid environments in sites found in Africa,” Professor Willerslev concludes.

The paper “A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA” is published in Nature. Material provided by the by University of Cambridge.

Adblock test (Why?)



Source link

Continue Reading

Science

NASA posts high-resolution images of Orion’s final lunar flyby

Published

 on

Orion just made its final pass around the moon on its way to Earth, and NASA has released some of the spacecraft’s best photos so far. Taken by a high-resolution camera (actually a heavily modified GoPro Hero 4) mounted on the tip of Orion’s solar arrays, they show the spacecraft rounding the Moon then getting a closeup shot of the far side.

The photos Orion snapped on its first near pass to the Moon were rather grainy and blown out, likely because they were captured with Orion’s Optical Navigation Camera rather than the solar array-mounted GoPros. Other GoPro shots were a touch overexposed, but NASA appears to have nailed the settings with its latest series of shots.

Space photos were obviously not the primary goal of the Artemis I mission, but they’re important for public relations, as NASA learned many moons ago. It was a bit surprising that NASA didn’t show some high-resolution closeups of the Moon’s surface when it passed by the first time, but better late than never.

Orion’s performance so far has been “outstanding,” program manager Howard Hu told reporters last week. It launched on November 15th as part of the Artemis 1 mission atop NASA’s mighty Space Launch System. Days ago, the craft completed a three and a half minute engine burn (the longest on the trip so far) to set it on course for a splashdown on December 11th.

Genius Dog 336 x 280 - Animated

The next mission, Artemis II, is scheduled in 2024 to carry astronauts on a similar path to Artemis I without landing on the moon. Then, humans will finally set foot on the lunar surface again with Artemis III, slated for launch in 2025.

Source link

Continue Reading

Science

Biosignatures: Discovery Of Earth’s Oldest DNA Breaks Record By One Million Years

Published

 on

Taxonomic profiles of the plant assemblage found in the metagenomes. Taxa in bold are genera only found as DNA and not as macrofossil or pollen. Asterisks indicate those that are found at other Pliocene Arctic sites. Extinct species as identified by either macrofossils or phylogenetic placements are marked with a dagger. Reads classified as Pyrus and Malus are marked with a pound symbol, and are probably over-classified DNA sequences belonging to another species within Rosaceae that are not present as a reference genome. — University of Cambridge

Two-million-year-old DNA has been identified for the first time – opening a ‘game-changing’ new chapter in the history of evolution.

 

Microscopic fragments of environmental DNA were found in Ice Age sediment in northern Greenland. Using cutting-edge technology, researchers discovered the fragments are one million years older than the previous record for DNA sampled from a Siberian mammoth bone.

The ancient DNA has been used to map a two-million-year-old ecosystem which weathered extreme climate change. Researchers hope the results could help to predict the long-term environmental toll of today’s global warming.

Genius Dog 336 x 280 - Animated

The discovery was made by a team of scientists led by Professor Eske Willerslev and Professor Kurt H. Kjær. Professor Willerslev is a Fellow of St John’s College, University of Cambridge, and Director of the Lundbeck Foundation GeoGenetics Centre at the University of Copenhagen where Professor Kjær, a geology expert, is also based.

The results of the 41 usable samples found hidden in clay and quartz are published today (7 DECEMBER 2022) in Nature.

Professor Willerslev said: “A new chapter spanning one million extra years of history has finally been opened and for the first time we can look directly at the DNA of a past ecosystem that far back in time..

“DNA can degrade quickly but we’ve shown that under the right circumstances, we can now go back further in time than anyone could have dared imagine.”

Professor Kjær said: “The ancient DNA samples were found buried deep in sediment that had built-up over 20,000 years. The sediment was eventually preserved in ice or permafrost and, crucially, not disturbed by humans for two million years.”

The incomplete samples, a few millionths of a millimetre long, were taken from the København Formation, a sediment deposit almost 100 metres thick tucked in the mouth of a fjord in the Arctic Ocean in Greenland’s northernmost point. The climate in Greenland at the time varied between Arctic and temperate and was between 10-17C warmer than Greenland is today. The sediment built up metre by metre in a shallow bay.

Scientists discovered evidence of animals, plants and microorganisms including reindeer, hares, lemmings, birch and poplar trees. Researchers even found that Mastodon, an Ice Age mammal, roamed as far as Greenland before later becoming extinct. Previously it was thought the range of the elephant-like animals did not extend as far as Greenland from its known origins of North and Central America.

Detective work by 40 researchers from Denmark, the UK, France, Sweden, Norway, the USA and Germany, unlocked the secrets of the fragments of DNA. The process was painstaking – first they needed to establish whether there was DNA hidden in the clay and quartz, and if there was, could they successfully detach the DNA from the sediment to examine it? The answer, eventually, was yes. The researchers compared every single DNA fragment with extensive libraries of DNA collected from present-day animals, plants and microorganisms. A picture began to emerge of the DNA from trees, bushes, birds, animals and microorganisms.

Some of the DNA fragments were easy to classify as predecessors to present-day species, others could only be linked at genus level, and some originated from species impossible to place in the DNA libraries of animals, plants and microorganisms still living in the 21st century.

The two-million-year-old samples also help academics build a picture of a previously unknown stage in the evolution of the DNA of a range of species still in existence today.

Professor Kjær said: “Expeditions are expensive and many of the samples were taken back in 2006 when the team were in Greenland for another project, they have been stored ever since.

“It wasn’t until a new generation of DNA extraction and sequencing equipment was developed that we’ve been able to locate and identify extremely small and damaged fragments of DNA in the sediment samples. It meant we were finally able to map a two-million-year-old ecosystem.”

Assistant Professor Mikkel W. Pedersen, co-first author on the paper and also based at the Lundbeck Foundation GeoGenetics Centre, said: “The Kap København ecosystem, which has no present-day equivalent, existed at considerably higher temperatures than we have today – and because, on the face of it, the climate seems to have been similar to the climate we expect on our planet in the future due to global warming.

“One of the key factors here is to what degree species will be able to adapt to the change in conditions arising from a significant increase in temperature. The data suggests that more species can evolve and adapt to wildly varying temperatures than previously thought. But, crucially, these results show they need time to do this. The speed of today’s global warming means organisms and species do not have that time so the climate emergency remains a huge threat to biodiversity and the world – extinction is on the horizon for some species including plants and trees.”

While reviewing the ancient DNA from the Kap København Formation, the researchers also found DNA from a wide range of microorganisms, including bacteria and fungi, which they are continuing to map. A detailed description of how the interaction – between animals, plants and single-cell organisms – within the former ecosystem at Greenland’s northernmost point worked biologically will be presented in a future research paper.

It is now hoped that some of the ‘tricks’ of the two-million-year-old plant DNA discovered may be used to help make some endangered species more resistant to a warming climate.

Professor Kjær said: “It is possible that genetic engineering could mimic the strategy developed by plants and trees two million years ago to survive in a climate characterised by rising temperatures and prevent the extinction of some species, plants and trees. This is one of the reasons this scientific advance is so significant because it could reveal how to attempt to counteract the devastating impact of global warming.”

The findings from the Kap København Formation in Greenland have opened up a whole new period in DNA detection.

Professor Willerslev explained: “DNA generally survives best in cold, dry conditions such as those that prevailed during most of the period since the material was deposited at Kap København. Now that we have successfully extracted ancient DNA from clay and quartz, it may be possible that clay may have preserved ancient DNA in warm, humid environments in sites found in Africa.

“If we can begin to explore ancient DNA in clay grains from Africa, we may be able to gather ground-breaking information about the origin of many different species – perhaps even new knowledge about the first humans and their ancestors – the possibilities are endless.”

 

Astrobiology

Source link

Continue Reading

Trending