adplus-dvertising
Connect with us

Science

Astronomers want your help hunting for asteroids

Published

 on

Anyone can become an asteroid hunter thanks to a new program launched by astronomers at the University of Arizona Lunar and Planetary Laboratory. As part of the NASA-funded Catalina Sky Survey, the scientists created an online portal that opens their mission – the discovery and identification of space rocks that regularly visit Earth’s neighborhood – to the general public.

While gazing up at the night sky with the naked eye, one might see stars, planets and the occasional airplane. What one usually won’t see, however, are asteroids and comets — lumps of rock tumbling through space – left over from the formation of our solar system about 4.6 billion years ago. Because of their origin, these space objects might hold clues about the formation of the sun and planets, scientists believe.

Through the new portal, scientists from the Catalina Sky Survey will share potential asteroid and comet detections from their ground-based telescopes with anyone with an internet connection. Even amateurs can help scientists find unknown objects in the solar system as they click through and pore over high-resolution, telescope snapshots of the sky that scientists haven’t been able to look at.

“I thought it would be great if people could do what we do every night,” said Carson Fuls, a science engineering specialist for the Catalina Sky Survey who heads the project. “We see this website as throwing open the doors: Do you want to look for asteroids, too? If so, come on in.”

300x250x1

To begin asteroid hunting, participants must create an account on Zooniverse, an online platform for people-powered research. Through the website, volunteers without any specialized training or expertise assist professional researchers from various fields. In the case of the public asteroid detection portal, a basic tutorial will have participants picking out moving asteroids from pictures in no time.

Participants look at sets of images of the night sky taken by one of the Catalina Sky Survey telescopes. Each image set contains four exposures taken six or seven minutes apart. The pictures are noteworthy because software spotted a moving speck of light from one image to the next, which may or may not represent the light reflected from a faraway comet or asteroid.

The task for the amateur asteroid hunter: Decide if the identified speck of light in the images looks like a genuine celestial body or, rather, is a false detection resulting from inconveniently timed “twinkles” of the star-studded background, dust on the telescope mirror or other causes. After answering by clicking a “yes” or “no” button, the participant can either write a comment or continue “planetary doom-scrolling” by moving on to the next detection.

It is not necessary that people know the correct answer every time, said Catalina Sky Survey director Eric Christensen. Rather, the system relies on strength in numbers.

“With enough people participating, you can establish a general consensus, so there’s less margin of error,” Christensen said.

The Catalina Sky Survey operates up to five large, powerful telescopes each night in their quest to keep track of over 1 million lumps of flying rock with diameters ranging from the length of a school bus to the width of Arizona. Initially, the images in the portal will come from their G96 telescope atop Mount Lemmon, just north of Tucson. The diameter of the telescope’s primary mirror is approximately 5 feet, and it can usually survey the whole Northern Hemisphere nighttime sky in about a month.

“The number of asteroids we detect per night with our telescope really depends on the weather or where we are in the lunar calendar,” Christensen said. “On clear nights, the database matches tens of thousands of candidates to known asteroids based on their motion, speed and position in the sky.”

While the lab’s software detects and records all asteroid sightings, Catalina Sky Survey is a NASA-funded project with the mission of specifically tracking and discovering near-Earth objects, or NEOs. NEOs are asteroids that have strayed from the flock of space rocks plodding around the sun in the asteroid belt between Mars and Jupiter. Their new orbits take them much closer to Earth, and some pose a potential threat if their orbit crosses that of Earth.

More than 14,400 NEOs in the past 30 years – almost half of the entire known population of nearly 32,000 – have been discovered by the Catalina Sky Survey. Of those, 1,200 were found just in the past year.

“We are most interested in candidates that are moving fast with an unknown identity because they are most likely to be NEOs,” Fuls said. “Because NEOs are closer to us, they appear to move faster and in somewhat random directions from our viewpoint compared to main belt asteroids.”

The process of spotting a new NEO and reporting it is time sensitive, and astronomers can lose track of them if there is no immediate follow-up on their discovery. That’s because NEOs have highly elliptical orbits that only bring them close to Earth every three or four years. Plus, some smaller NEOs can only be detected if they are passing near Earth.

“NEOs move so erratically that it’s easy to miss them,” Christensen said. “We try not to filter out false detections too aggressively because this could also filter out some NEOs.”

Currently, the asteroid-tracking telescope on Mount Lemmon is set up to take about 1,000 images per night. Afterwards, sensitive software ranks detected moving objects from most to least likely to be an asteroid. The final step is for a human observer to analyze the detections that the software identified.

“A human can only process so many images a night,” said Fuls, explaining that while the software flags many possible objects, the researchers don’t have the time and resources to look through everything that was picked up. “We are missing a certain number of objects because they simply didn’t rank high enough in the algorithm.”

That is where a Zooniverse account comes in handy, as “citizen scientists” peek through sky photos that the software flagged but weren’t obvious enough to make the cut. For each set of images, a participant must decide: Did the software pick up on a never-before seen space object or did it just get confused by the flickering stars?

Already, three citizen scientists have discovered 22 possible candidates for unknown asteroids during the testing phase of the web portal.

“We’ve sent these detections off to the Minor Planet Center as potential new discoveries, and most of these objects have not yet been linked to any object that has been detected before,” Fuls said. “We anticipate that there will be many more discoveries like that going forward.”

The Catalina Sky Survey astronomers plan to release new data into the interface every day after their scheduled nighttime viewing session.

“The observations made by these citizen scientists may not always be of a never-before-detected object,” Christensen said, “but they may still be key observations that allow the Minor Planet Center to nail down the identity of something that, until now, was just a candidate.”

To keep prospective asteroid hunters on their toes, Fuls said, he and his colleagues will throw pictures of already known objects into the mix to test people’s ability to identify real objects and keep them engaged.

“Even when you’re at the telescope, you perk up when you see one of those,” Fuls said. “You don’t want it to be mindless and boring.”

 

728x90x4

Source link

Continue Reading

Science

NASA to launch sounding rockets into moon's shadow during solar eclipse – Phys.org

Published

 on


This photo shows the three APEP sounding rockets and the support team after successful assembly. The team lead, Aroh Barjatya, is at the top center, standing next to the guardrails on the second floor. Credit: NASA/Berit Bland

NASA will launch three sounding rockets during the total solar eclipse on April 8, 2024, to study how Earth’s upper atmosphere is affected when sunlight momentarily dims over a portion of the planet.

The Atmospheric Perturbations around Eclipse Path (APEP) sounding rockets will launch from NASA’s Wallops Flight Facility in Virginia to study the disturbances in the created when the moon eclipses the sun. The sounding rockets had been previously launched and successfully recovered from White Sands Test Facility in New Mexico, during the October 2023 .

300x250x1

They have been refurbished with new instrumentation and will be relaunched in April 2024. The mission is led by Aroh Barjatya, a professor of engineering physics at Embry-Riddle Aeronautical University in Florida, where he directs the Space and Atmospheric Instrumentation Lab.

The sounding rockets will launch at three different times: 45 minutes before, during, and 45 minutes after the peak local eclipse. These intervals are important to collect data on how the sun’s sudden disappearance affects the ionosphere, creating disturbances that have the potential to interfere with our communications.

The ionosphere is a region of Earth’s atmosphere that is between 55 to 310 miles (90 to 500 kilometers) above the ground. “It’s an electrified region that reflects and refracts and also impacts as the signals pass through,” said Barjatya. “Understanding the ionosphere and developing models to help us predict disturbances is crucial to making sure our increasingly communication-dependent world operates smoothly.”

A sounding rocket is able to carry science instruments between 30 and 300 miles above Earth’s surface. These altitudes are typically too high for science balloons and too low for satellites to access safely, making sounding rockets the only platforms that can carry out direct measurements in these regions. Credit: NASA’s Goddard Space Flight Center

The ionosphere forms the boundary between Earth’s lower atmosphere—where we live and breathe—and the vacuum of space. It is made up of a sea of particles that become ionized, or electrically charged, from the sun’s energy or .

When night falls, the ionosphere thins out as previously ionized particles relax and recombine back into neutral particles. However, Earth’s terrestrial weather and space weather can impact these particles, making it a dynamic region and difficult to know what the ionosphere will be like at a given time.

It’s often difficult to study short-term changes in the ionosphere during an eclipse with satellites because they may not be at the right place or time to cross the eclipse path. Since the exact date and times of the are known, NASA can launch targeted sounding rockets to study the effects of the eclipse at the right time and at all altitudes of the ionosphere.

As the eclipse shadow races through the atmosphere, it creates a rapid, localized sunset that triggers large-scale atmospheric waves and small-scale disturbances or perturbations. These perturbations affect different radio communication frequencies. Gathering the data on these perturbations will help scientists validate and improve current models that help predict potential disturbances to our communications, especially high-frequency communication.

This conceptual animation is an example of what observers might expect to see during a total solar eclipse, like the one happening over the United States on April 8, 2024. Credit: NASA’s Scientific Visualization Studio

The APEP rockets are expected to reach a maximum altitude of 260 miles (420 kilometers). Each rocket will measure charged and neutral particle density and surrounding electric and magnetic fields. “Each rocket will eject four secondary instruments the size of a two-liter soda bottle that also measure the same data points, so it’s similar to results from fifteen rockets while only launching three,” explained Barjatya. Embry-Riddle built three secondary instruments on each rocket, and the fourth one was built at Dartmouth College in New Hampshire.

In addition to the rockets, several teams across the U.S. will also be taking measurements of the ionosphere by various means. A team of students from Embry-Riddle will deploy a series of high-altitude balloons. Co-investigators from the Massachusetts Institute of Technology’s Haystack Observatory in Massachusetts and the Air Force Research Laboratory in New Mexico will operate a variety of ground-based radars taking measurements.

Using this data, a team of scientists from Embry-Riddle and Johns Hopkins University Applied Physics Laboratory are refining existing models. Together, these various investigations will help provide the puzzle pieces needed to see the bigger picture of ionospheric dynamics.

The animation depicts the waves created by ionized particles during the 2017 total solar eclipse. Credit: MIT Haystack Observatory/Shun-rong Zhang. Zhang, S.-R., Erickson, P. J., Goncharenko, L. P., Coster, A. J., Rideout, W. & Vierinen, J. (2017). Ionospheric Bow Waves and Perturbations Induced by the 21 August 2017 Solar Eclipse. Geophysical Research Letters, 44(24), 12,067-12,073. https://doi.org/10.1002/2017GL076054

When the APEP- launched during the 2023 annular solar eclipse, scientists saw a sharp reduction in the density of charged particles as the annular eclipse shadow passed over the atmosphere.

“We saw the perturbations capable of affecting radio communications in the second and third rockets, but not during the first rocket that was before peak local eclipse,” said Barjatya. “We are super excited to relaunch them during the total eclipse to see if the perturbations start at the same altitude and if their magnitude and scale remain the same.”

The next total solar eclipse over the contiguous U.S. is not until 2044, so these experiments are a rare opportunity for scientists to collect crucial data.

Provided by
NASA

Citation:
NASA to launch sounding rockets into moon’s shadow during solar eclipse (2024, March 27)
retrieved 28 March 2024
from https://phys.org/news/2024-03-nasa-rockets-moon-shadow-solar.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Royal Sask. Museum research finds insect changes may have set stage for dinosaurs' extinction – CTV News Regina

Published

 on


Research by the Royal Saskatchewan Museum (RSM) shows that ecological changes were occurring in insects at least a million years before dinosaur extinction.

Papers published in the scientific journal, Current Biology, describe the first insect fossils found in amber from Saskatchewan and the unearthing of three new ant species from an amber deposit in North Carolina, according to a release from the province.

The amber deposit from in the Big Muddy Badlands of Saskatchewan, which was formed about 67 million years ago, preserved insects that lived in a swampy redwood forest about one million years before the extinction of dinosaurs.

300x250x1

“Fossils in the amber deposit seem to show that common Cretaceous insects may have been replaced on the landscape by their more modern relatives, particularly in groups such as ants, before the extinction event,” Elyssa Loewen, curatorial assistant, said.

The research team was led by Loewen and Dr. Ryan McKellar, the RSM’s curator of paleontology.

“These new fossil records are closer than anyone has gotten to sampling a diverse set of insects near the extinction event, and they help researchers fill in a 17-million-year gap in the fossil record of insects around that time,” Dr. McKellar said.

The three ant species discovered in North Carolina also belonged to extinct groups that didn’t survive past the Cretaceous period.

“When combined with the work in Saskatchewan, the two recent papers show that there was a dramatic change in ant diversity sometime between 77 and 67 million years ago,” Dr. McKellar said in the release.

“Our analyses of body shapes in the fossils suggests that the turnover was not related to major differences in ecology, but it may have been related to something like the size and complexity of ant colonies. More work is needed to confirm this.”

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Meteors, UFOs or something else? Dawson City, Yukon, residents puzzled by recent sightings in night sky – CBC.ca

Published

 on


Some residents in Dawson City, Yukon, say they’ve been seeing unusual things in the night sky lately — and it’s not the Northern Lights. 

But some might say it’s equally as fascinating.

Over the past few weeks, some residents have taken to social media to report seeing what they described as a fireball or meteor overhead. And last week, two residents said they both saw something similar.

300x250x1

Naomi Gladish lives in Henderson Corner, a subdivision approximately 20 kilometres from downtown Dawson City. She told CBC News she saw something while walking her dog Friday morning.

“I looked up and saw a bright star,” Gladish said. “Or what I thought was a star.” 

“Within a fraction of a second, I realized it was actually moving quickly. And then as I watched it, a second later it grew a long tail.”

Dawson City resident Naomi Gladish said she saw something similar to the fireball shown in this image from the American Meteor Society. (American Meteor Society)

Gladish said the unknown object started to change into a pale blue colour, like a gas flame. Then, a few seconds later, it appeared to burn out.

“I could see fire, or coal,” Gladish said. “Like red glowing bits, breaking off of it. And then that was it. I tried watching to see if I could see any dark chunks falling from that spot, or carrying on from that spot, but the sky was dark.”

A minute or two after Gladish saw what she thought was a meteor, she heard a boom in the distance.

“My dog and I both turned our head to that exact direction that I had just seen it,” she said.”I figured it was related.”

Two women walking through snowy mountain terrain.
Naomi Gladish hiking with her sister at Tombstone Park. (Submitted by Naomi Gladish)

Dawson resident Jeff Delisle reported seeing something similar at about the same time. He then took to social media to ask if anyone else had seen it. Two people responded saying they had. 

“It flew right above me,” Delisle wrote.

“Pretty cool looking…. What is it?”

Likely not a meteor, says astronomer

Christa Van Laerhoven, president of the Yukon Astronomical Society, came across Delisle’s post and got in touch. She asked about what he’d seen, such as how long it was in the sky and the colour.

Van Laerhoven told CBC News that based on descriptions from both Delisle and Gladish, she doesn’t believe it could have been a meteor.

She says a meteor would have been moving much faster, and the colouring would have appeared differently. 

“Meteors can be any colour but … as a rule, are a consistent colour. What these people were describing had different colours. So the head looked blue and then the tail was more of an orange,” van Laerhoven said.

“That’s just something that doesn’t happen with meteors.”

a meteor
This zoomed-in still from a dashcam video captured in 2020 by Louise Cooke from Mount Lorne, Yukon, shows what one space science expert said appears to be an unusually-bright meteor travelling across the sky. (Submitted by: Louise Cooke)

Van Laehoven believes there may be another explanation for the recent unusual sightings: space junk, falling to earth.

“Space junk, when it comes in … comes through the atmosphere and starts glowing that can be more irregular, because of the variety of materials that go into a spacecraft.”

Van Laerhoven also suggested it could a very fast plane, or someone playing with rockets.

Gladish, however, doesn’t think anyone in Dawson was playing with rockets on Friday morning.

“Unless they’re talking about someone in China, or like a distant land playing with very high, powerful rockets … then sure,” she said.

“This was not something that someone in Dawson was doing … This came from much, much higher and it was much, much different to anything that would be locally caused.”

Van Laerhoven also dismissed another possibility: alien visitors.

“If aliens were coming to Earth, we would know,” she said.

“Simply because it would take them so much effort to get here that it would be very hard to imagine them getting here and not doing something dramatic enough that we would actually know about it.”

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Trending