Connect with us

Science

B.C. scientists and First Nation create decomposing ‘biofoam’ packaging from wood

Published

 on

VANCOUVER — Styrofoam can take 500 years to decompose as it bloats landfills around the world, but new packing material called biofoam made of forestry waste can decompose in a matter of weeks, say scientists.

University of British Columbia researcher Feng Jiang says that’s a potential environmental boon, because Styrofoam currently fills up to 30 per cent of landfills.

“So, we have been doing a few tests, which is putting biofoam into the soil and then it started degrading … and after two months, it will be completely gone,” said Jiang, an assistant professor in the university’s faculty of forestry and the Canada Research Chair in sustainable functional biomaterials.

The biofoam project is a collaboration between the Wet’suwet’en First Nation in central B.C. and University of B.C. researchers.

Genius Dog 336 x 280 - Animated

The partnership came about three years ago when Jiang met Reg Ogen, president and CEO of the First Nation’s Yinka Dene Economic Development Limited Partnership, at an encounter arranged by the B.C. Forests Ministry.

Jiang and his fellow scientists listened as First Nation members described concerns about what to do with wood waste on their land.

Ogen said wildfires and infestations of mountain pine beetles in the 1990s and 2000s had created large amounts of waste that they wanted to be used in a meaningful way.

“We met with Dr. Jiang there and we looked at different ways of utilizing the wood waste and finally we came up with a product that I think we can do something good with. And hopefully, at the end of the day, to keep all of the Styrofoam out of the landfills and then make sure that we continue to protect Mother Earth,” said Ogen.

He said seeing waste transformed into a useful material brought a smile to his face.

Ogen hopes biofoam will create First Nations jobs that were lost when the pine beetle epidemic swept through their timber industry.

“One of our main goals is to make sure that our next generations are taken care of and made sure that they have good job opportunities,” he said.

“With this opportunity, we don’t necessarily have to look (only) at our backyard. There are other areas in Western Canada we could look at, even in the United States or overseas … I think there’s a great opportunity to make it a worldwide success.”

Biofoam’s texture is close to Styrofoam and can be similarly fashioned into different shapes. Its natural origins make biofoam slightly darker in colour.

While the specific ingredients remain a secret, it’s made by grinding the wood into fibre to create a slurry, then adding non-toxic chemicals, and finally putting the mixture into an oven at 80 C.

Jiang said the process is similar to baking.

“After a couple of hours, we take it out, just like a big cake,” said Jiang.

Investors and manufacturers are now being sought to launch a pilot plant to produce biofoam in B.C. next year.

A side benefit of the project could be mitigating forest fires that are fuelled by wood waste, Jiang said.

The project’s intellectual property is shared by Jiang’s team and the Wet’suwet’en First Nation, UBC said in a statement.

Jiang said environmental sustainability is his passion, and although it isn’t realistic to substitute all plastics with natural fibres, he wants to stress what he called the three Rs: reusing, recycling and replacing plastics.

“Whenever I see a product in the market, I always think: can we replace it with natural fibre? I also keep asking my students the same question. Throughout my whole career, I want to use my knowledge and expertise to create something that is beneficial to the society and to the planet,” said Jiang.

This report by The Canadian Press was first published Nov. 21, 2022.

This story was produced with the financial assistance of the Meta and Canadian Press News Fellowship.

 

Nono Shen, The Canadian Press

 

 

Science

Using atomic clocks in space to solve dark matter mystery – Innovation News Network

Published

 on


A team of international scientists is proposing to send atomic clocks into space to detect and understand enigmatic dark matter.

Dark matter is a mystery that has plagued researchers for decades. This unknown essence represents 85% of all matter in the Universe, and although its effects can be observed, it has not been directly detected. Experts from the University of Delaware, the University of California, and the University of Tokyo are collaborating to solve this longstanding mystery by sending atomic clocks into space.

The research, ‘Direct detection of ultralight dark matter bound to the Sun with space quantum sensors,’ which is published in Nature Astronomy, plans to send two atomic clocks into the inner reaches of the solar system to search for ultralight dark matter that has wavelike properties that may affect the operation of the clocks.

What are atomic clocks?

Atomic clocks tell time by measuring the rapid oscillations of atoms and are already utilised in space to enable the Global Positioning System (GPS). In the future, space clocks could help navigate spacecraft and provide links to Earth-based cocks.

Genius Dog 336 x 280 - Animated

All clocks mark time by using some form of a repetitive process, such as a swinging pendulum. However, atomic clocks use laser technology to manipulate and measure the oscillations of atoms which are extremely fast. For example, a clock based on strontium atoms ticks 430 trillion times per second, and atomic clocks are exceedingly more precise than any mechanical devices.

Historically, atomic clocks can cover the size of a couple of tables, but recent advances in precision and portability mean that some atomic clocks can now fit into a van, with NASA’s Deep Space Atomic Clock being even smaller, at around the size of a toaster.

Nevertheless, different types of clocks, based on much higher frequencies, have been developed over the last 15 years, such as optical clocks that are orders of magnitude more precise and will not lose even a second of time over billions of years.

Marianna Safronova, a physicist at the University of Delaware, said: “We now have portable clocks, and it’s fun to think about how you would go about sending such high-precision clocks to space and establish what great things we can do.

“It is a beautiful synergy between a quantum expert and particle theorists, and we are working on new ideas at the intersection of these two fields.”

Unravelling the mysterious properties of dark matter

The proposed research would send space clocks closer to the Sun than Mercury – an area they believe there is more dark matter to detect. These include atomic, nuclear, and molecular clocks that are currently being developed and are otherwise known as quantum sensors.

Safronova explained: “This was inspired by the Parker Solar Probe, the ongoing NASA mission that sent a spacecraft closer to the Sun than any other spacecraft has gone before. It has nothing to do with quantum sensors or clocks, but it showed that you could send a satellite very close to the Sun, sensing new conditions and making discoveries. That is much closer to the Sun than what we are proposing here.”

The aim of the study is to investigate ultralight dark matter, which the researchers believe could make a huge halo-like region that is bound to the Sun. Ultralight dark matter could cause the energies of atoms to oscillate, which will change how the clock ticks, although this effect depends on the atoms the clock uses. The researchers then monitor the differences in the clocks to look for dark matter.

“It has very specific properties and is a very specific dark matter that is detectable by clocks. What is observable is the ratio of those two clock frequencies. That ratio should oscillate if such dark matter exists,” Safronova said.

She explained that nuclear clocks, which are based on nuclear energy levels rather than atomic energy levels, may be the best clock for this research. She is currently involved in a project to build a prototype funded by the European Research Council.

Adblock test (Why?)



Source link

Continue Reading

Science

Space Atomic Clocks Could Unravel the Nature of Dark Matter – AZoQuantum

Published

 on



Analyzing an atomic clock onboard a spacecraft within the orbit of Mercury and very close to the Sun could be the trick to revealing the nature of dark matter according to a new research article published in the December 5th issue of the journal Nature Astronomy.

Artist’s impression of a space atomic clock used to uncover dark matter. Image Credit: Kavli IPMU.

Dark matter composes over 80% of the mass in the universe, but it has thus far dodged detection on Earth, regardless of decades of experimental endeavors. A core component of these hunts is a hypothesis regarding the local density of dark matter, which establishes the number of dark matter particles moving via the detector at all times and thus the experimental sensitivity.

In a few models, this density can be a lot higher than is typically supposed, and dark matter can become more intense in certain regions than in others.

Genius Dog 336 x 280 - Animated

One vital group of experimental searches is those using nuclei or atoms because these have realized extraordinary sensitivity to signals of dark matter. This is conceivable, in part, because when dark matter particles have extremely small masses, they prompt oscillations in the very constants of nature.

These oscillations, for example the interaction strength of the electromagnetic force or in the mass of the electron, alter the transition energies of nuclei and atoms in foreseeable ways.

An international group of scientists, Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) Project Researcher Joshua Eby, University of California, Irvine, Postdoctoral Fellow Yu-Dai Tsai, and University of Delaware Professor Marianna S. Safronova, recognized the potential in these oscillating signals.

They stated that in a specific region of the Solar System, between the orbit of Mercury and the Sun, the dark matter’s density could be exceptionally large, which would mean extraordinary sensitivity to the oscillating signals.

These signals could be captured by atomic clocks, which work by meticulously measuring the frequency of photons discharged in transitions of various states in atoms. Ultralight dark matter in the region of the clock experiment could alter those frequencies as the oscillations of the dark matter marginally increase and decrease the photon energy.

The more dark matter there is around the experiment, the larger these oscillations are, so the local density of dark matter matters a lot when analyzing the signal.

Joshua Eby, Project Researcher, Kavli Institute for the Physics and Mathematics of the Universe

While the accurate density of the dark matter near the Sun is not established, the scientists debate that even a comparatively low-sensitivity search could deliver crucial information.

The density of dark matter is just constrained in the Solar System by information concerning planet orbits. In the region between the Sun and Mercury, the planet closest to the Sun, there is nearly no constraint. Therefore, a measurement onboard a spacecraft could rapidly expose world-leading restrictions on dark matter in these models.

The technology to test their theory is already present. Eby says the NASA Parker Solar Probe, which has been functioning since 2018 with the help of shielding, has moved closer to the Sun than any manmade craft in history and is at present working within the orbit of Mercury, with plans to travel even closer to the Sun in a year.

Atomic clocks in space are already established for numerous reasons other than hunting for dark matter.

Long-distance space missions, including possible future missions to Mars, will require exceptional timekeeping as would be provided by atomic clocks in space. A possible future mission, with shielding and trajectory very similar to the Parker Solar Probe, but carrying an atomic clock apparatus, could be sufficient to carry out the search.

Joshua Eby, Project Researcher, Kavli Institute for the Physics and Mathematics of the Universe

More from AZoQuantum: Precise Atomic Clock Proves Einstein was Right on Time

Journal Reference

Tsai, Y-D., et al. (2022) Direct detection of ultralight dark matter bound to the Sun with space quantum sensors. Nature Astronomy. doi.org/10.1038/s41550-022-01833-6.

Source:  https://www.ipmu.jp/en

Adblock test (Why?)



Source link

Continue Reading

Science

After lunar flyby, NASA’s Orion spacecraft is set to splashdown on Sunday – Ars Technica

Published

 on


Enlarge / Orion, the Moon, and a crescent Earth on Monday.
NASA

The Orion spacecraft swung by the Moon on Monday, flying to within 130 km of that world’s surface as it set course for a return to Earth this weekend.

In making this “powered flyby burn” to move away from the Moon, Orion’s service module performed its longest main engine firing to date, lasting 3 minutes and 27 seconds. After successful completion of the maneuver, NASA’s mission management team gave the “go” to send recovery teams out into the Pacific Ocean, where Orion is due to splashdown on Sunday, during the middle of the day.

Genius Dog 336 x 280 - Animated

By getting into an orbit around the Moon, and back out of it again during its deep space mission, Orion has now completed four main propulsive burns. This completes a big test of the spacecraft and its propulsive service module, which was built by the European Space Agency. Although a boilerplate version of Orion made a flight in 2014, it did so without a service module.

As part of this Artemis I mission, NASA is now three weeks into a 25.5-day test flight of the Orion spacecraft. The goal is to validate the spacecraft’s capabilities ahead of a human flight of the vehicle in about two years’ time, the Artemis II mission.

Orion has met most of its main objectives to date, with only the entry, descent, and splashdown part of its mission ahead of it. The spacecraft’s heat shield must demonstrate its ability to survive reentry at a velocity of 39,400 kph. This big test will come Sunday during a fiery reentry into Earth’s atmosphere.

A minor power issue

So far, Orion’s test flight has gone remarkably well. Typically, with new spacecraft, there are issues with thrusters, navigation, or onboard avionics and more. However, Orion has had no major issues. The only real troubleshooting has involved a problem with power systems on the vehicle.

The issue has occurred with four “latching current limiters” that help route power to propulsion and heating systems on Orion. For some reason, automated controllers on Orion commanded the four current limiters to “open” when no such command was supposed to be sent. “We’re not exactly sure on the root cause of the problem, but teams are doing tests on the ground,” said Debbie Korth, the Orion Program deputy manager, during a briefing on Monday evening at Johnson Space Center in Houston.

Overall, the Orion spacecraft has performed like a champion.
Enlarge / Overall, the Orion spacecraft has performed like a champion.
NASA

This system is somewhat like a circuit breaker box in a home, and for some reason four of the breakers were opened when they were not supposed to be. This did not pose a threat to Orion, as there are backup power systems. Had a crew been on board it would have required a minor procedure to account for the problem.

In an interview after the news briefing, Korth said she did not think the glitch would have an impact on the service module that will be used for the Artemis II mission. This hardware is already built and being tested in the United States.

“I think it’s probably too early to say for sure, but ideally we will not want to perturb the Artemis II service module,” she said. “This may very well be something we can handle with software.”

Adblock test (Why?)



Source link

Continue Reading

Trending