adplus-dvertising
Connect with us

Science

BepiColombo Earth flyby enables unique instrument scan of Moon – Space Daily

Published

 on


Space exploration missions require precision of the highest order. In the early hours of 10 April 2020, the European Space Agency’s (ESA) BepiColombo spacecraft will fly towards Earth at over 30 kilometres per second. At 06:25 CEST it will make its closest approach, over the South Atlantic, at an altitude of 12,677 kilometres. The spacecraft will then fly further towards the centre of the Solar System, travelling somewhat more slowly than when it arrived. This is a unique opportunity for planetary researchers and engineers at the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) and the Institute for Planetology at the Westphalian Wilhelms University of Munster to conduct a unique experiment, where they will study the Moon.

As early as 9 April, with its Earth-facing side illuminated by the Sun, the Moon will be observed for the first time in the thermal infrared and examined for its mineralogical composition using the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) instrument, developed and built at DLR. This will be possible because there will be no absorption by Earth’s atmosphere. At Mercury, MERTIS will investigate the composition and mineralogy of Mercury’s surface and investigate the planet’s interior. The scientific evaluation of the data will then be carried out jointly at participating institutes in Munster, Berlin, Gottingen and Dortmund, as well as several locations in Europe and the USA.

The main purpose of the Earth flyby is to slow down BepiColombo somewhat without expending propellant, in order to bring the spacecraft onto a trajectory towards Venus. During its flight towards Earth, on its spiral orbit through the inner Solar System, it will travel at a speed of 30.4 kilometres per second. As it moves away from Earth, BepiColombo be travelling at a speed of approximately 25 kilometres per second.

With two subsequent close flybys of Venus (the first flyby will take place on 16 October 2020), BepiColombo will then be on a trajectory that will take it to the final destination of the six-year journey, an orbit around Mercury, the innermost planet of the Solar System. Due to the enormous gravitational field of the Sun and the limited transport capacity of the available launchers, planetary missions to the inner and outer Solar System can only be accomplished by following very complex trajectories.

Unique possibility to observe the Earth-facing side of the Moon

“Observing the Moon with our MERTIS instrument on board BepiColombo is a one-of-a-kind opportunity,” says Jorn Helbert from the DLR Institute of Planetary Research, who is a Co-Principal Investigator for MERTIS. “We will examine the Earth-facing side of the Moon spectroscopically in the thermal infrared for the first time. Without any absorption by Earth’s atmosphere, the view from space will provide a valuable new data set for lunar research.

This is also an excellent opportunity to test how well our instrument works and to gain experience in preparation for operations in Mercury orbit.” The current situation with the Coronavirus pandemic is also putting the team to the test. “Our team will support the MERTIS instrument from our home offices and process and evaluate the data there,” Helbert adds. “This has been tested several times over the last few days and ‘data evaluation at the kitchen table’ seems to work well.”

MERTIS has two uncooled radiation sensors. Its spectrometer covers a wavelength range from seven to 14 micrometres, and its radiometer to a wavelength range from seven to 40 micrometres. It will identify rock-forming minerals in the mid-infrared at a spatial resolution of 500 metres.

“We will not be able to obtain such a detailed resolution when observing the Moon,” explains Gisbert Peter, MERTIS Project Manager at the DLR Institute of Optical Sensor Systems, which was responsible for the design and construction of MERTIS. “Having the Moon in the spectrometer’s field of view before the flyby is partly an astronomical or geometric ‘coincidence’ and, above all, due to good planning. MERTIS will observe the Moon from distances of between 740,000 and 680,000 kilometres for four hours.” Here, the instrument, which is very compact at 3.3 kilograms, will be able to demonstrate its unique optical properties for the first time in orbit. Three small cameras on the exterior of the BepiColombo spacecraft will also acquire images of Earth during the approach.

“The Moon and Mercury are not dissimilar in size, and their surfaces resemble one another in many ways,” explains Harald Hiesinger from the University of Munster, Principal Investigator for the MERTIS experiment. After decades of lunar research, he is particularly looking forward to the new measurements.

“We will obtain new information on rock-forming minerals and the temperatures on the lunar surface and will later be able to compare the results with those acquired at Mercury. The Moon and Mercury are two important bodies that are fundamental to enhancing our understanding of the Solar System,” Hiesinger adds: “I am anticipating many exciting results from the observations with MERTIS. After about 20 years of intensive preparations, the time will finally come on Thursday – our long wait will be over, and we will receive our first scientific data from space.”

Third mission to Mercury

BepiColombo was launched on 20 October 2018 on board an Ariane 5 launch vehicle, which lifted off from the European spaceport in French Guiana. It is the most extensive European project to explore a planet in the Solar System. The science component of the mission consists of two spacecraft that will orbit Mercury at different altitudes – the ESA Mercury Planetary Orbiter (MPO) and the Japan Aerospace Exploration Agency (JAXA) Mercury Magnetospheric Orbiter (MMO). Two NASA missions – Mariner 10, in the mid-1970s, and MESSENGER, which orbited Mercury from 2011 to 2015 – are the only other spacecraft to have studied the planet that is closest to the Sun.

While MPO is designed to analyse the planetary surface and composition, MMO will explore its magnetosphere. Further goals of the mission are the investigation of the solar wind, the internal structure and the planetary environment of Mercury, and its interaction with the near-solar environment. Scientists also hope to gain insights into the formation of the Solar System, and Earth-like planets in particular. Until they reach Mercury orbit, the two spacecraft will travel as part of the Mercury Composite Spacecraft (MCS).

This includes the Mercury Transfer Module (MTM), which supplies the orbiters with power and protects them from the extreme temperatures as they approach and fly past Mercury. MCS is also equipped with the Magnetospheric Orbiter Sunshield and Interface Structure (MOSIF), which will further protect the MMO before it enters orbit. Surface temperatures on Mercury range between 430 degrees Celsius on the day side and minus 180 degrees Celsius on the night side. On 5 December 2025, after six flybys of Mercury, the MPO, MMO and MOSIF will enter an initial capture orbit.

Juggling gravity and velocity

Flyby manoeuvres, also referred to as ‘Gravity Assist Manoeuvres’, have become routine for space missions. They are used to change the flight trajectory and speed of spacecraft without using propellant, by employing the gravitational fields of planets. Leaving Earth’s gravitational field and reaching a distant destination in the Solar System requires a great deal of energy for acceleration, for changes of direction, and also for deceleration at the destination. Carrying this energy in the form of propellants for engines or thrusters is expensive in terms of mass and would inevitably reduce the science payload that can be carried or simply make the mission technically unfeasible.

Close flybys of planets enable an elegant technical solution. If a spacecraft approaches a planet, that planet’s gravitational attraction prevails over that of the Sun at a certain distance, influencing its movement. In a sense, a flyby is the juggling of two forms of energy – the kinetic energy of the spacecraft and the planet’s potential energy, which, with its much greater mass, attracts the small spacecraft during its approach. With this juggling, depending on the spacecraft’s velocity and proximity to the planet, energy can be transferred from the planet to the spacecraft, or vice versa.

The visitor then either begins to travel faster (and the planet slows down imperceptibly) or, with kinetic energy being transferred from the spacecraft to the planet, the craft slows down (and imperceptibly accelerates the planet in return). The speed of the spacecraft does not change in relation to the planet; its overall velocity and trajectory are only modified. However, since the planet is in orbit around the Sun, this change in the trajectory of the spacecraft causes it (and minimally the planet) to accelerate or slow down on their orbits around the Sun.

The ingenious trajectory solution proposed by Giuseppe ‘Bepi’ Colombo

For the first time, flyby manoeuvres along a planetary orbit were used on the Mariner 10 mission to allow two more close flybys after the first flyby of the planet Mercury. The calculations were made by the Italian engineer and mathematician Giuseppe ‘Bepi’ Colombo. In 1970, Colombo, a professor at the university in his hometown of Padua, was invited to a conference at NASA’s Jet Propulsion Laboratory in Pasadena, California, held in preparation for the Mariner 10 mission.

There, he saw the original mission plan and realised that, with a highly precise first flyby, two more close flybys of Mercury were possible. The current European-Japanese mission to Mercury was named in his honour.

Of the 15 instruments on board the two orbiters, three were largely developed in Germany: BELA (BepiColombo Laser Altimeter), MPO-MAG (MPO Magnetometer) and MERTIS. The DLR laser experiment BELA will only be operated when the spacecraft reaches its destination.

The magnetometer is already being used to carry out measurements during the flight through Earth’s magnetosphere, which extends far into space. Funded by the DLR Space Administration, it was developed and built at the Institute for Geophysics and Extraterrestrial Physics at TU Braunschweig in collaboration with the Graz Space Research Institute and Imperial College London.

Last chance to see ‘Bepi’ – but not in Europe

Space enthusiasts are, of course, interested in knowing whether they will have the opportunity to see BepiColombo one last time, during the flyby, before it leaves on its way to the inner Solar System. The answer is indeed yes.

However, this will only be possible south of 30 degrees north over the Atlantic, in South America, Mexico and, with some restrictions, over Texas and California. The solar panels, illuminated by sunlight, will probably be most visible above the European Southern Observatory in the clear air of the Chilean Andes. In Central Europe, the consolation remains that on the night of 7 to 8 April, there will be an exceptionally large full Moon, commonly referred to as a ‘supermoon’.

Related Links

BepiColombo at ESA

News Flash at Mercury
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being there;

We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook – our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don’t have a paywall – with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.


SpaceDaily Monthly Supporter
$5+ Billed Monthly


SpaceDaily Contributor

$5 Billed Once

credit card or paypal


MERCURY RISING
Europe to Conduct BepiColombo Flyby Amid Coronavirus Crisis

Paris (ESA) Mar 31, 2020


Controllers at ESA’s mission control centre are preparing for a gravity-assist flyby of the European-Japanese Mercury explorer BepiColombo. The manoeuvre, which will see the mission adjust its trajectory by harnessing Earth’s gravitational pull as it swings past the planet, will be performed amid restrictions ESA has implemented in response to the coronavirus pandemic.

BepiColombo, launched in October 2018, is currently orbiting the Sun at a similar distance as Earth. On 10 April, at about 06:25 a … read more


Let’s block ads! (Why?)

728x90x4

Source link

Continue Reading

News

Here’s how Helene and other storms dumped a whopping 40 trillion gallons of rain on the South

Published

 on

 

More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.

That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.

“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”

The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.

Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.

Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.

Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.

Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.

Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.

“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”

The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.

North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.

Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”

Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.

Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.

For Dello, the “fingerprints of climate change” were clear.

“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”

___

Follow AP’s climate coverage at https://apnews.com/hub/climate

___

Follow Seth Borenstein on Twitter at @borenbears

___

Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.

Source link

Continue Reading

Science

‘Big Sam’: Paleontologists unearth giant skull of Pachyrhinosaurus in Alberta

Published

 on

 

It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.

On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.

They call it “Big Sam.”

The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.

It didn’t die alone.

“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.

She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”

“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.

The head alone, she said, is about the size of a baby elephant.

The discovery was a long time coming.

The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.

“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.

When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”

“It contains about 100 to 300 bones per square metre,” she said.

Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.

About a year ago, they found the second adult: Big Sam.

Bamforth said both dinosaurs are believed to have been the elders in the herd.

“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.

“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”

The genders of the two adults are unknown.

Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.

The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.

She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.

“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.

“It’s pretty exciting.”

This report by The Canadian Press was first published Sept. 25, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending