adplus-dvertising
Connect with us

Science

Boots on Mars: Artemis 1 launch and heat shield test take NASA closer – Space.com

Published

 on


In the span of just six days, NASA took two big steps toward putting boots on Mars.

The agency’s Artemis 1 mission launched on Wednesday morning (Nov. 16), sending an uncrewed Orion capsule toward the moon atop a huge Space Launch System (SLS) rocket.

NASA is counting on SLS and Orion to help the agency establish a lunar base by the end of the 2020s — a key priority of the Artemis program. And, if all goes according to plan, the two vehicles will also enable even more ambitious feats, helping astronauts get to Mars by the late 2030s or early 2040s.

300x250x1

Related: NASA’s Artemis 1 moon mission: Live updates
More: 10 wild facts about the Artemis 1 moon mission

Last week, on Nov. 10, NASA tested hardware that could help these crewed Mars missions land safely — an inflatable heat shield called LOFTID, which launched to Earth orbit with the JPSS-2 weather satellite and then came barreling back to Earth. LOFTID survived its fiery return trip in great shape, suggesting that the tech has great potential to help land heavy hardware on Mars, team members said.

“The demonstration was a huge success,” Joe Del Corso, LOFTID project manager at NASA’s Langley Research Center in Virginia, said during a press conference on Thursday (Nov. 17).

“We have now the ability to both put heavy payloads into space and to bring them back down,” he added. “These two successes are huge steps in enabling human access and exploration. We’re going to space, and we want to be able to stay there.”

LOFTID (short for “Low-Earth Orbit Flight Test of an Inflatable Decelerator”) is an inflatable heat shield designed to slow a payload’s descent through a planetary atmosphere via drag.

NASA deems this strategy a promising one for its crewed Mars plans, which will require landing big payloads such as habitat modules on the Red Planet. Such gear could tip the scales at 20 tons or so — far too heavy for current Mars entry, descent and landing systems to handle. 

NASA’s 1-ton Curiosity and Perseverance Mars rovers, for example, pretty much tapped out the rocket-powered sky crane method that got them down safely through the Red Planet’s thin air, agency officials have said. (Parachutes were part of those rovers’ touchdowns as well, as they would be with an inflatable heat shield landing system.)

Last week’s launch provided an ambitious test of this tech. LOFTID launched in a compact configuration with JPSS-2 aboard a United Launch Alliance Atlas V rocket. After deploying from the Atlas V’s Centaur upper stage, LOFTID expanded to its full diameter of about 20 feet (6 meters), positioned itself for Earth return and took the plunge.

Initial inspections, conducted after the heat shield was pulled out of the Pacific Ocean near Hawaii, suggested that LOFTID passed the test with flying colors. And a further week of analyses has only strengthened that conclusion.

“The vehicle looks just beautiful. It looks pristine, and I really can’t say that enough,” Del Corso said. “It was surprising to me how well, how good, the vehicle looked.”

Scientists and engineers will continue analyzing data for another year or so to get a complete understanding of the test flight, LOFTID team members said.

The LOFTID project, which cost a total of $93 million over five years, isn’t the final step in inflatable Mars heat shields, however.

A structure about three or four times wider than LOFTID would likely be required to get a big payload like a habitat module down safely on the Red Planet, project team members said. Scaling the tech up so dramatically poses a number of challenges, which scientists and engineers can now start assessing seriously after LOFTID’s successful flight.

“There’s quite a bit of work that needs to be done with that [scaling up]; there are facility considerations with that that need to be looked at,” Trudy Kortes, director of technology demonstrations at NASA’s Space Technology Mission Directorate, said during Thursday’s briefing.  

“But the roadmap will guide us on that and our future investments in that,” she added. “We’re taking a look at that now, and really the short-term future for that. So yeah, that would be the next step for this capability.”

Mike Wall is the author of “Out There (opens in new tab)” (Grand Central Publishing, 2018; illustrated by Karl Tate), a book about the search for alien life. Follow him on Twitter @michaeldwall (opens in new tab). Follow us on Twitter @Spacedotcom (opens in new tab) or Facebook (opens in new tab).

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Is there life on Mars? Maybe, and it could have dropped its teddy – Phys.org

Published

 on


Larger than the average bear: there’s a 2-kilometer-wide bear’s face on the surface of Mars, space scientists say.

Yogi, Paddington and Winnie the Pooh, move over. There’s a new bear in town. Or on Mars, anyway.

The beaming face of a cute-looking teddy bear appears to have been carved into the surface of our nearest planetary neighbor, waiting for a passing satellite to discover it.

300x250x1

And when the Mars Reconnaissance Orbiter passed over last month, carrying aboard the most powerful camera ever to venture into the Solar System, that’s exactly what happened.

Scientists operating the HiRISE (High Resolution Imaging Science Experiment), which has been circling Mars since 2006, crunched the data that made it back to Earth, and have now published a picture of the face.

“There’s a hill with a V-shaped collapse structure (the nose), two craters (the eyes), and a circular fracture pattern (the head),” said scientists at the University of Arizona, which operates the kit.

Each one of the features in the 2,000-meter (1.25-mile)-wide face has a possible explanation that hints at just how active the surface of the planet is.

“The circular fracture pattern might be due to the settling of a deposit over a buried impact crater,” the scientists said.

“Maybe the nose is a volcanic or mud vent and the deposit could be lava or mud flows?”

HiRISE, one of six instruments aboard the Orbiter, snaps super-detailed pictures of the Red Planet helping to map the surface for possible future missions, either by humans or robots.

Over the last ten years the team has managed to capture images of avalanches as they happened, and discovered dark flows that could be some kind of liquid.

They’ve also found twirling across the Martian surface, as well as a feature that some people thought looked a lot like Star Trek’s Starfleet logo.

One thing they have not found, however, is the little green men who were once popularly believed to inhabit the planet.

© 2023 AFP

Citation:
Is there life on Mars? Maybe, and it could have dropped its teddy (2023, January 31)
retrieved 31 January 2023
from https://phys.org/news/2023-01-life-mars-teddy.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Why I Hunt for Sidewalk Fossils – The New York Times

Published

 on


These oft-overlooked records invite us to imagine what has been and what might be.

A paleontologist once told me that city sidewalks hold snapshots. If I trained my gaze toward my feet, he said, I would find evidence of all kinds of commutes: traces of hopping birds, the soles of humans’ shoes, restless leaves that fell and sank into wet concrete at just the right moment. I might see a smattering of little paw prints zigging, zagging, doubling back, evidence of important rodent business that didn’t often overlap with mine.

These marks are too recent to pass muster with scientific sticklers, but in all respects except age, they are fossils. There are many ways to make one. Some form when a creature is entombed in sediment: Water percolates through, flush with minerals, and over time the mixture infiltrates the bones, where it settles and forms stone. Other fossils are casts, made, for instance, when a shell dissolves and leaves behind a mold that eventually fills with sediment, which hardens into rock. But not all fossils involve remains; some catalog movements. These are the kind that stipple our sidewalks — nascent trace fossils, records of fleeting contact.

300x250x1

Throughout the pandemic, I turned to nature to track time and step outside myself. I photographed the sweetgum tree outside my Brooklyn window, noting when it leafed into a bushy chlorophylled curtain or when it dropped fruit that fell to the ground like unshattered ornaments. Most afternoons of that first lonely spring, I roamed a cemetery. When magnolia blossoms smudged the scene pink, I stood under the canopies until wind splashed the petals against my shoulders.

I was lucky, of course, to be simply scared and lonely — not dead, not intubated, not choosing between peril and paycheck. But time was slippery, and I felt stuck in my own brain, a foggy, trembling ecosystem I had no interest in studying. By early 2022, I was cocooned in my partner’s Morningside Heights apartment. On weekend mornings, we shuffled around the neighborhood, and each volunteered to notice something new: a startling mushroom, the pale bellies of pigeons waterfalling down a facade before flocking skyward. I became fixated on sidewalk fossils. Fossil-finding outings were a relief — an invitation to crouch, touch, lose myself in evidence of skittering and scrabbling, tethering myself to a past and a future.

Once I started noticing these impressions, it was fun to imagine myself as a paleontologist of the urban present.

Because sidewalk fossils are essentially the same color as the surrounding concrete, they’re most visible when light rakes across them; a fossil that’s elusive at noon might announce itself at dawn or dusk. So I timed a second daily walk for the hour when the light fled. Late afternoons introduced me to tiny forked footprints that marked the scene of, perhaps, an avian skirmish. There were others: a dog’s paws, three-quarters of a shoe. Though ichnologists, who study trace fossils, might discount leaves, I marveled at those too: most of a London plane and a ginkgo, with its corrugated fan. Across from a closed-up snack cart, I knelt until the cold concrete prickled my knees. I wriggled out of my mitten and traced a leaf’s sharp, diagonal veins, its saw-toothed sides.

When scientists encounter a fossil, they often try to puzzle out an explanation of how it got there. Maybe an animal was stranded or washed off its feet or chased by predators. Once I started noticing these impressions, it was fun to imagine myself as a paleontologist of the urban present. A bonanza of bird feet made me wonder if someone had sprinkled seeds or dropped a bagel. How long ago? What kind? When a leaf didn’t seem to match any of the nearby trees, I wondered if it was an interloper, blown in from blocks away or if it testified to an ecological eviction — a tree yanked out and replaced with another species or swapped for sidewalk. The fossils fastened my attention to something tangible but also invited it to wander and to think about city streets as collages of past and present, about how our nonhuman neighbors are architects, too. How we all shed traces of ourselves, whether we know it or not.

Of course, there is more significant proof of the past. Mammoths sometimes turn up in farmers’ fields, their tusks curved like scythes abandoned in the dirt. Parades of dinosaur footprints still march along the banks or beds of some prehistoric rivers and seas. Those are awesome, showy and obvious. I line up to see them; I happily gawk. But it was a tiny thrill to encounter evidence of the past that was subtle and recent, proof that others were out there. The sidewalk fossils felt intimate — the paleontological equivalent of a raft of letters secreted away beneath a floorboard.

Only they’re not actually rare. When sidewalks are repaired, birds and other animals ignore attempts to keep them pristine. Leaves do whatever the wind demands. These fossils are easy to find, and we’re lucky to have them. When I was lingering in the worst parts of my brain, sidewalk fossils dislodged me. Unlike the many fossils that represent stillness, the moment when an animal died and the place it remained unless humans carved it free, sidewalk fossils are often peeks into lives that continued. The birds flew somewhere; the dogs, I hope, went on to wag over many sticks and smells. As the sun sank and I trudged home, the fossils — these little flukes, these interesting accidents — were reminders of small, exhilarating life.


Jessica Leigh Hester is a science journalist whose first book is “Sewer” (Bloomsbury Academic, 2022).

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Green comet expected to be visible for first time in 50 millennia – Al Jazeera English

Published

 on


Comet C/2022 E3 (ZTF) is visible with binoculars, telescopes and in some areas, the naked eye – and it will grow brighter.

A green-hued comet is expected to be the most visible to stargazers on Wednesday as it shoots past Earth and the sun for the first time in about 50,000 years.

Discovered less than a year ago, the dirty snowball last passed near Earth during Neanderthal times, according to NASA.

300x250x1

The cosmic visitor will swing by our planet within 42 million kilometres (26 million miles) Wednesday before speeding away again, unlikely to return for millions of years.

This harmless comet already is visible in a clear northern night sky with binoculars and small telescopes, and possibly the naked eye in the darkest corners of the Northern Hemisphere.

It’s expected to brighten as it draws closer and rises higher over the horizon through the end of January, and is best seen in the predawn hours. By February 10, it will be near Mars, a good landmark.

Stargazers in the Southern Hemisphere will have to wait until next month for a glimpse.

Finding a remote location to avoid light pollution in populated areas is key to catching a nice view of the comet as it journeys past our planet heading away from the sun and back toward the solar system’s outer reaches.

While plenty of comets have graced the sky over the past year, “this one seems probably a little bit bigger and therefore a little bit brighter and it’s coming a little bit closer to the Earth’s orbit,” said NASA’s comet-and asteroid-tracking expert, Paul Chodas.

Nicknamed “dirty snowballs” by astronomers, comets are balls of ice, dust and rocks and wander towards the inner solar system when they’re dislodged from various gravitational forces, becoming more visible as they venture closer to the heat given off by the sun.

Fewer than a dozen comets are discovered each year by observatories around the world.

The green comet was discovered on March 2, 2022 by astronomers using the Zwicky Transient Facility, a wide-field camera at Caltech’s Palomar Observatory in Palomar Mountain, California, the United States. That explains its official, cumbersome name: comet C/2022 E3 (ZTF).

Its greenish, emerald hue reflects the comet’s chemical composition – it is the result of a clash between sunlight and carbon-based molecules in the comet’s coma, the cloud around the nucleus that makes the comet appear fuzzy in the sky.

This comet last passed Earth at a time when Neanderthals still inhabited Eurasia, the human species was expanding its reach beyond Africa, big Ice Age mammals including mammoths and saber-toothed cats roamed the landscape, and northern Africa was a wet, fertile and rainy place.

The comet can provide clues about the primordial solar system because it formed during the solar system’s early stages, according to California Institute of Technology physics professor Thomas Prince.

NASA plans to observe the comet with its James Webb Space Telescope, which could provide clues about the solar system’s formation.

The Virtual Telescope Project at the Bellatrix Astronomical Observatory in Ceccano, Italy will have a live feed accessible here.

The comet — a time capsule from the emerging solar system 4.5 billion years ago — came from what’s known as the Oort cloud well beyond Pluto. This deep-freeze haven for comets is believed to stretch more than one-quarter of the way to the next star.

While comet ZTF originated in our solar system, we can’t be sure it will stay there, NASA’s Chodas said. If it gets booted out of the solar system, it will never return, he added.

But don’t fret if you miss it.

“In the comet business, you just wait for the next one because there are dozens of these,” Chodas said. “And the next one might be bigger, might be brighter, might be closer.”

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Trending