adplus-dvertising
Connect with us

Science

Brightest gamma-ray burst ever seen a 1-in-10000-years event that’s ‘absolutely monstrous,’ scientists say

Published

 on

The Hubble Space Telescope’s Wide Field Camera 3 revealed the infrared afterglow (circled) of the BOAT GRB and its host galaxy, seen nearly edge-on as a sliver of light extending to the burst’s upper right. This composite incorporates images taken on Nov. 8 and Dec. 4, 2022, one and two months after the eruption.  (Image credit: NASA, ESA, CSA, STScI, A. Levan (Radboud University); Image Processing: Gladys Kober)

An extragalactic outburst whose light hurtled through the inner solar system last fall was 70 times brighter than any other such eruption that scientists have observed, researchers report.

Radiation from the explosion — a gamma-ray burst (GRB) known as GRB 221009A — swept over Earth on Oct. 9, 2022. It saturated gamma-ray detectors on multiple space telescopes, earning the nickname the BOAT, short for “brightest of all time.”

Astronomers continued studying the BOAT with a variety of instruments for several months afterward, seeking to characterize the explosion further. And those efforts have only added to the BOAT’s legend.

“It is just an absolutely monstrous burst. It is extremely extraordinary; we’ve never seen anything remotely close to it,” Eric Burns, an assistant professor of physics and astronomy at Louisiana State University, said Tuesday (March 28) during a press conference at the 20th meeting of the American Astronomical Society’s High Energy Astrophysics Division in Hawaii.

300x250x1

“The BOAT is a once-in-10,000-year event,” Burns added. “So, there’s a reasonable chance this is the brightest gamma-ray burst to hit Earth since human civilization began.”

Related: What is a gamma-ray burst?

The brightest explosion of all time

It is just an absolutely monstrous burst.”

Eric Burns, astronomer at LSU

GRBs are the most powerful explosions in the universe. They generate more energy in mere seconds than Earth’s sun will produce over its entire 10-billion-year lifetime.

Astronomers recognize two different classes: short GRBs, which last about two seconds or less, and long ones, which can continue for multiple minutes. The short variety is likely spawned by collisions of superdense stellar corpses known as neutron stars, astronomers say. Most long GRBs, on the other hand, are generated by black holes born as massive stars collapse and die.

“So, you have the core collapse; this creates a black hole. The black hole powers jets that propagate out at just under the speed of light,” Burns said.

“As these jets go out, they release their energy in the form of prompt gamma-ray burst emission,” he added. “This is followed by what’s known as afterglow, and at later times, the energy deposited into that star powers a supernova explosion.”

The BOAT was a long GRB, so researchers expect a supernova to emerge at its locale, a spot about 1.9 billion light-years from Earth. But they haven’t found one yet, despite searching the area with NASA’s James Webb Space Telescope and Hubble Space Telescope, along with other instruments.

“If it’s there, it’s very faint,” Andrew Levan, a professor of astrophysics at Radboud University in the Netherlands, said in a NASA statement on Tuesday (opens in new tab). “We plan to keep looking, but it’s possible the entire star collapsed straight into the black hole instead of exploding.”

Why so bright?

GRB jets tend to be relatively narrow, so most of them don’t sweep over Earth. But these astrophysical events, though extreme, are common enough to be observed in bulk. Astronomers have catalogued about 12,000 GRBs to date using data gathered by tools such as NASA’s Fermi Gamma-ray Space Telescope and Konus, a Russian instrument that flies on NASA’s Wind spacecraft, Burns said.

He led an analysis that dug deep into the GRB record, establishing the BOAT’s brightness bona fides. And other work showed that this superlative brightness didn’t stem from overly powerful jets.

“When you compare the energy in this jet, it’s very similar to the energy of jets we’ve seen in other GRBs,” Kate Alexander, an assistant professor of astronomy at the University of Arizona, said during Tuesday’s press conference.

“So then, why was it so bright?” she added. “It turns out that all of the energy in this jet was focused into a very narrow angle. So, all of the particles moving in this jet were very, extremely narrowly beamed, and that narrow beam happened to be focused right at Earth.”

She compared the effect to a garden hose, with the BOAT’s jet analogous to the more-intense spray you get by using a constricting nozzle.

This illustration shows the ingredients of a long gamma-ray burst, the most common type. The core of a massive star (left) has collapsed, forming a black hole that sends a jet of particles moving through the collapsing star and out into space at nearly the speed of light. Radiation across the spectrum arises from hot ionized gas (plasma) in the vicinity of the newborn black hole, collisions among shells of fast-moving gas within the jet (internal shock waves), and from the leading edge of the jet as it sweeps up and interacts with its surroundings (external shock). (Image credit: NASA’s Goddard Space Flight Center)

Related stories:

Astronomers had to put some of their BOAT observations on hold a few months ago, as the source region went behind the sun from Earth’s perspective. But that area is now coming back into view, and researchers are ready.

“More observations, including with Hubble and with Webb, are going to be undertaken in the next few weeks and months,” Levan said during the Tuesday telecon.

He and a number of other researchers are especially keen to determine whether or not the BOAT spawned a supernova.

“Watch this space for what we hope will be a more conclusive answer!” Levan said.

Researchers reported these and other BOAT results in a special issue of The Astrophysical Journal Letters (opens in new tab).

728x90x4

Source link

Continue Reading

Science

New image from the James Webb Space Telescope shows thousands upon thousands of stars in a galaxy 17 million light years away – Yahoo Canada

Published

 on


Every single dot you see is a star. There are thousands upon thousands of stars in this image from the James Webb Space Telescope.ESA/Webb, NASA & CSA, J. Lee and the PHANGS-JWST Team

  • The James Webb Space Telescope snapped a new image of a galaxy 17 million light-years away.

  • Thousands upon thousands of stars are visible, many of which are concentrated in the galaxy’s heart.

  • JWST is peering into the hearts of many galaxies to help scientists better understand star formation.

With the power of the James Webb Space Telescope, we can peer into the mysterious hearts of galaxies. And that’s exactly what you’re seeing here, in this new image from Webb of the galaxy NGC 5068.

NGC 5068 is located about 17 million light-years from Earth. For perspective, the Milky Way’s neighborhood of galaxies called the Local Group, is 5 million light-years away. So, this galaxy is beyond what we might consider close.

Each individual dot of white light you can see is a star, per Mashable. NASA said there are thousands upon thousands of stars in this image. And many of them are hanging out at the galaxy’s center, which you can see in the upper left as a bright bar of white light.

300x250x1
Skitched photo showing a red circle pointing to the center of galaxy NGC 5068.Skitched photo showing a red circle pointing to the center of galaxy NGC 5068.

The bright bar in the upper left of the image is where the most stars are concentrated.ESA/Webb, NASA & CSA, J. Lee and the PHANGS-JWST Team

This region appears so bright because that’s where most of the stars are concentrated. That’s also where all the action is.

James Webb peers into the hearts of many galaxies to uncover their secrets

Most galaxies have an ultra-bright center due to warm dust that’s heated by massive bursts of star formation, according to the Harvard Smithsonian. And it’s this star formation that astronomers are interested in studying more with the help of JWST.

In fact, NGC 5068 is just one in a series of other galaxies Webb is observing for a project to help us better understand star formation. Webb has also taken images of the spiral galaxy IC 5332:

Picture of a spiral galaxy taken from James Webb Space Telescope. The spirals look like spider webs dotted by pink gaseous regions throughout the image.Picture of a spiral galaxy taken from James Webb Space Telescope. The spirals look like spider webs dotted by pink gaseous regions throughout the image.

The James Webb Telescope is peering into the hearts of many galaxies to help astronomers gain a better understanding of star formation, especially in the turbulent environments of galactic cores.ESA/Webb, NASA & CSA, J. Lee and the PHANGS-JWST and PHANGS-HST Teams

And the heart of galaxy M74, aka the “Phantom Galaxy”:

Blue heart of the Phantom Galaxy seen from the Webb Telescope.Blue heart of the Phantom Galaxy seen from the Webb Telescope.

The James Webb Space Telescope sees objects in infrared wavelengths, which allows it to peer past obstructive light that would otherwise block our ability to see into the hearts of galaxies.ESA/Webb, NASA & CSA, J. Lee and the PHANGS-JWST Team./J. Schmidt

The James Webb Space Telescope has the advantage of seeing in the infrared.

Infrared wavelengths are too long for the human eye to detect. But they’re especially important for studying in space because they allow JWST to peer past obstructive visual light that would otherwise block our ability to see into the hearts of galaxies and their bustling environments of star formation.

“By observing the formation of stars in nearby galaxies, astronomers hope to kick-start major scientific advances with some of the first available data from Webb,” NASA said.

Watch a video of NGC 5068 below:

Read the original article on Business Insider

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

ESA – Nicolas Bobrinsky on innovation and risk management | ESA Masterclass – European Space Agency

Published

 on



Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Behind Galactic Bars: Webb Telescope Unlocks Secrets of Star Formation

Published

 on

 

This image of the barred spiral galaxy NGC 5068 is a composite from two of the James Webb Space Telescope’s instruments, MIRI and NIRCam. Credit: ESA/Webb, NASA & CSA, J. Lee and the PHANGS-JWST Team

 

<span class=”glossaryLink” aria-describedby=”tt” data-cmtooltip=”

300x250x1
NASA
Established in 1958, the National Aeronautics and Space Administration (NASA) is an independent agency of the United States Federal Government that succeeded the National Advisory Committee for Aeronautics (NACA). It is responsible for the civilian space program, as well as aeronautics and aerospace research. Its vision is &quot;To discover and expand knowledge for the benefit of humanity.&quot; Its core values are &quot;safety, integrity, teamwork, excellence, and inclusion.&quot; NASA conducts research, develops technology and launches missions to explore and study Earth, the solar system, and the universe beyond. It also works to advance the state of knowledge in a wide range of scientific fields, including Earth and space science, planetary science, astrophysics, and heliophysics, and it collaborates with private companies and international partners to achieve its goals.

” data-gt-translate-attributes=”[“attribute”:”data-cmtooltip”, “format”:”html”]”>NASA’s <span class=”glossaryLink” aria-describedby=”tt” data-cmtooltip=”

James Webb Space Telescope
The James Webb Space Telescope (JWST or Webb) is an orbiting infrared observatory that will complement and extend the discoveries of the Hubble Space Telescope. It covers longer wavelengths of light, with greatly improved sensitivity, allowing it to see inside dust clouds where stars and planetary systems are forming today as well as looking further back in time to observe the first galaxies that formed in the early universe.

” data-gt-translate-attributes=”[“attribute”:”data-cmtooltip”, “format”:”html”]”>James Webb Space Telescope has captured a detailed image of the barred spiral galaxy NGC 5068. Part of a project to record star formation in nearby galaxies, this initiative provides significant insights into various astronomical fields. The telescope’s ability to see through gas and dust, typically hiding star formation processes, offers unique views into this crucial aspect of galactic evolution.

A delicate tracery of dust and bright star clusters threads across this image from the James Webb Space Telescope. The bright tendrils of gas and stars belong to the barred spiral galaxy NGC 5068, whose bright central bar is visible in the upper left of this image – a composite from two of Webb’s instruments. NASA Administrator Bill Nelson revealed the image on June 2 during an event with students at the Copernicus Science Centre in Warsaw, Poland.

 

In this image of the barred spiral galaxy NGC 5068, from the James Webb Space Telescope’s MIRI instrument, the dusty structure of the spiral galaxy and glowing bubbles of gas containing newly-formed star clusters are particularly prominent. Three asteroid trails intrude into this image, represented as tiny blue-green-red dots. Asteroids appear in astronomical images such as these because they are much closer to the telescope than the distant target. As Webb captures several images of the astronomical object, the asteroid moves, so it shows up in a slightly different place in each frame. They are a little more noticeable in images such as this one from MIRI, because many stars are not as bright in mid-infrared wavelengths as they are in near-infrared or visible light, so asteroids are easier to see next to the stars. One trail lies just below the galaxy’s bar, and two more in the bottom-left corner. Credit: ESA/Webb, NASA & CSA, J. Lee and the PHANGS-JWST Team

 

NGC 5068 lies around 20 million light-years from Earth in the constellation Virgo. This image of the central, bright star-forming regions of the galaxy is part of a campaign to create an astronomical treasure trove, a repository of observations of star formation in nearby galaxies. Previous gems from this collection can be seen here (IC 5332) and here (M74). These observations are particularly valuable to astronomers for two reasons. The first is because star formation underpins so many fields in astronomy, from the physics of the tenuous <span class=”glossaryLink” aria-describedby=”tt” data-cmtooltip=”

plasma
Plasma is one of the four fundamental states of matter, along with solid, liquid, and gas. It is an ionized gas consisting of positive ions and free electrons. It was first described by chemist Irving Langmuir in the 1920s.

” data-gt-translate-attributes=”[“attribute”:”data-cmtooltip”, “format”:”html”]”>plasma that lies between stars to the evolution of entire galaxies. By observing the formation of stars in nearby galaxies, astronomers hope to kick-start major scientific advances with some of the first available data from Webb.

NGC 5068 Webb NIRCam

This view of the barred spiral galaxy NGC 5068, from the James Webb Space Telescope’s NIRCam instrument, is studded by the galaxy’s massive population of stars, most dense along its bright central bar, along with burning red clouds of gas illuminated by young stars within. This near-infrared image of the galaxy is filled by the enormous gathering of older stars which make up the core of NGC 5068. The keen vision of NIRCam allows astronomers to peer through the galaxy’s gas and dust to closely examine its stars. Dense and bright clouds of dust lie along the path of the spiral arms: These are H II regions, collections of hydrogen gas where new stars are forming. The young, energetic stars ionize the hydrogen around them, creating this glow represented in red. Credit: ESA/Webb, NASA & CSA, J. Lee and the PHANGS-JWST Team

 

The second reason is that Webb’s observations build on other studies using telescopes including the Hubble Space Telescope and ground-based observatories. Webb collected images of 19 nearby star-forming galaxies which astronomers could then combine with Hubble images of 10,000 star clusters, spectroscopic mapping of 20,000 star-forming emission nebulae from the <span class=”glossaryLink” aria-describedby=”tt” data-cmtooltip=”

Very Large Telescope
The Very Large Telescope array (VLT) is a visible and infrared wavelength telescope facility operated by the European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. It is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter and four movable 1.8m diameter Auxiliary Telescopes.

” data-gt-translate-attributes=”[“attribute”:”data-cmtooltip”, “format”:”html”]”>Very Large Telescope (VLT), and observations of 12,000 dark, dense molecular clouds identified by the Atacama Large Millimeter/submillimeter Array (ALMA). These observations span the electromagnetic spectrum and give astronomers an unprecedented opportunity to piece together the minutiae of star formation.

With its ability to peer through the gas and dust enshrouding newborn stars, Webb is particularly well-suited to explore the processes governing star formation. Stars and planetary systems are born amongst swirling clouds of gas and dust that are opaque to visible-light observatories like Hubble or the VLT. The keen vision at infrared wavelengths of two of Webb’s instruments — MIRI (Mid-Infrared Instrument) and NIRCam (Near-Infrared Camera) — allowed astronomers to see right through the gargantuan clouds of dust in NGC 5068 and capture the processes of star formation as they happened. This image combines the capabilities of these two instruments, providing a truly unique look at the composition of NGC 5068.

The James Webb Space Telescope stands as the apex of space science observatories worldwide. Tasked with demystifying enigmas within our own solar system, Webb will also extend its gaze beyond, seeking to observe distant worlds orbiting other stars. In addition to this, it aims to delve into the cryptic structures and the origins of our universe, thereby facilitating a deeper understanding of our position within the cosmic expanse. The Webb project is an international endeavor spearheaded by NASA, conducted in close partnership with the <span class=”glossaryLink” aria-describedby=”tt” data-cmtooltip=”

European Space Agency
The European Space Agency (ESA) is an intergovernmental organization dedicated to the exploration and study of space. ESA was established in 1975 and has 22 member states, with its headquarters located in Paris, France. ESA is responsible for the development and coordination of Europe’s space activities, including the design, construction, and launch of spacecraft and satellites for scientific research and Earth observation. Some of ESA’s flagship missions have included the Rosetta mission to study a comet, the Gaia mission to create a 3D map of the Milky Way, and the ExoMars mission to search for evidence of past or present life on Mars.

” data-gt-translate-attributes=”[“attribute”:”data-cmtooltip”, “format”:”html”]”>European Space Agency (ESA) and the Canadian Space Agency.

 

 

728x90x4

Source link

Continue Reading

Trending