adplus-dvertising
Connect with us

Science

Dalhousie research project benefits from NASA mission to gain unprecedented understanding of the Earth’s surface water and ocean topography

Published

 on

When Hurricane Fiona hit the East Coast of Canada, many in coastal communities had one pressing concern on their minds — how high will the ocean surge? The answer to the question would make the difference of whether their evacuation was necessary or if their homes made it through the storm.

Two Dalhousie-based researchers aim to deliver a new understanding of the waters that surround us with help from data to be transmitted from a satellite launched this morning from Vandenberg Space Force Base in California. The Surface Water and Ocean Topography (SWOT) satellite mission was developed by NASA and the French space agency, Centre National d’Études Spatiales (CNES), with contributions from the Canadian and UK Space Agencies.

“Until now, we could only measure sea surface height on large ocean-basin scales, using conventional altimeter satellites. They use a very narrow downward-looking radar beam following the satellite track. But that can only resolve coarse ocean surface features. It’s not nearly enough to tell us the topography of finer scale eddies and ocean fronts,” said Dr. William Perrie, an adjunct professor at Dalhousie who is also a senior research scientist at Canada’s Department of Fisheries and Oceans.

300x250x1

Zooming in on surface water

SWOT will be the first satellite mission to observe nearly all the planet’s surface water, measuring water levels in lakes, rivers, reservoirs, and the ocean, giving scientists the ability to track the movement of water around the world. The SWOT satellite will provide a detailed view of a swath of 120 kilometers along its trajectory, providing a high-resolution picture of ocean circulation and currents in the open ocean and coastal areas.

Dr. Perrie and his Dalhousie SWOT project partner, Dr. Guoqiang Liu, will focus primarily on the ocean, harnessing this new data to improve computer models currently used to predict its movements and how these movements impact coastal communities, weather, climate, and ecosystems.


Dr. Guoqiang Liu and Dr. William Perrie will harness the new data to improve computer models currently used to predict ocean movements (Danny Abriel photo).


Sharing data, better decisions

“We will share the data we collect with Environment and Climate Change Canada and colleagues in other research centres to improve their models. The most important part of SWOT is that it can measure water surface height, which is very important for understanding a wide range of phenomena, from the topography of lakes and rivers, to coastal flooding and storm surge, to ocean currents and circulation. The data will benefit all parts of society and will be particularity significant for people living along coastlines,” said Dr. Liu.

Until SWOT, getting a definitive understanding of how sea level height has changed over time has been difficult using observations from space- and Earth-based instruments. New insights from SWOT into coastal sea level will eventually lead to improved accuracy in computer models necessary for understanding climate change, sea level rise projections, coastal flood forecasting and a plethora of other environment and climate issues.

For example, Dr. Perrie will use the data to help guide decisions to protect the endangered right whales that migrate to the Bay of Fundy, Gulf of Saint Lawrence and other waters off Canada’s East Coast.

“SWOT will allow us to better monitor the Gaspé Current and therefore we think it will help us better estimate where the whales might congregate,” he says. “And this is important because if the whales are there, then Canada’s Department of Fisheries and Oceans will want to closely monitor these waters and possibly close the area to fisheries and shipping to stop whales from being killed by ship strikes or fish net entanglements.”

He says right whales are just one species that could benefit, noting that better understanding of physical oceanography will provide the information we need to better manage our engagement in all ocean ecosystems.

Beyond SWOT

He’s also hopeful that that SWOT mission will help with our understanding of the impacts and future of climate change but cautions that answers won’t come quickly.

“Climate is a long-term process. You need to build up data for years and decades before you can detect trends. But better data like this will lead to a better understanding of weather and climate, both seasonal and longer-term prediction. It will be a step-by-step process,” he says.

Engineers integrate separate parts of the SWOT satellite into one in a Thales Alenia Space clean room facility in Cannes, France (Thales Alenia Space photo).

SWOT will orbit around the planet and repeat its imaging every 21 days over its three-year mission, providing a new picture of how our planet’s water changes over time. Dr. Perrie says scientists are already beginning to make plans for subsequent missions.

“Satellites have limited lifetimes, but they take years to build. So, we are already beginning to think about how to enhance SWOT and move to the next levels, to come after.”


Comments

All comments require a name and email address. You may also choose to log-in using your preferred social network or register with Disqus, the software we use for our commenting system. Join the conversation, but keep it clean, stay on the topic and be brief.
Read comments policy.

 

Source link

Continue Reading

Science

Rare ‘big fuzzy green ball’ comet visible in B.C. skies, a 50000-year sight

Published

 on

In the night sky, a comet is flying by Earth for the first time in 50,000 years.

Steve Coleopy, of the South Cariboo Astronomy Club, is offering some tips on how to see it before it disappears.

The green-coloured comet, named C/2022 E3 (ZTF), is not readily visible to the naked eye, although someone with good eyesight in really dark skies might be able to see it, he said. The only problem is it’s getting less visible by the day.

“Right now the comet is the closest to earth and is travelling rapidly away,” Coleopy said, noting it is easily seen through binoculars and small telescopes. “I have not been very successful in taking a picture of it yet, because it’s so faint, but will keep trying, weather permitting.”

300x250x1

At the moment, the comet is located between the bowl of the Big Dipper and the North Star but will be moving toward the Planet Mars – a steady orange-coloured point of light- in the night sky over the next couple of weeks, according to Coleopy.

“I have found it best to view the comet after 3:30 in the morning, after the moon sets,” he said. “It is still visible in binoculars even with the moon still up, but the view is more washed out because of the moonlight.”

He noted the comet looks like a “big fuzzy green ball,” as opposed to the bright pinpoint light of the stars.

“There’s not much of a tail, but if you can look through the binoculars for a short period of time, enough for your eyes to acclimatize to the image, it’s quite spectacular.”

To know its more precise location on a particular evening, an internet search will produce drawings and pictures of the comet with dates of where and when the comet will be in each daily location.

Coleopy notes the comet will only be visible for a few more weeks, and then it won’t return for about 50,000 years.


728x90x4

Source link

Continue Reading

Science

Extreme species deficit of nitrogen-converting microbes in European lakes

Published

 on

Sampling of Lake Constance water from 85 m depth, in which ammonia-oxidizing archaea make up as much as 40% of all microorganisms

Dr. David Kamanda Ngugi, environmental microbiologist at the Leibniz Institute DSMZ

300x250x1

Leibniz Institute DSMZ

 

An international team of researchers led by microbiologists from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH in Braunschweig, Germany, shows that in the depths of European lakes, the detoxification of ammonium is ensured by an extremely low biodiversity of archaea. The researchers recently published their findings in the prestigious international journal Science Advances. The team led by environmental microbiologists from the Leibniz Institute DSMZ has now shown that the species diversity of these archaea in lakes around the world ranges from 1 to 15 species. This is of particularly concern in the context of global biodiversity loss and the UN Biodiversity Conference held in Montreal, Canada, in December 2022. Lakes play an important role in providing freshwater for drinking, inland fisheries, and recreation. These ecosystem services would be at danger from ammonium enrichment. Ammonium is an essential component of agricultural fertilizers and contributes to its remarkable increase in environmental concentrations and the overall im-balance of the global nitrogen cycle. Nutrient-poor lakes with large water masses (such as Lake Constance and many other pre-alpine lakes) harbor enormously large populations of archaea, a unique class of microorganisms. In sediments and other low-oxygen environments, these archaea convert ammonium to nitrate, which is then converted to inert dinitrogen gas, an essential component of the air. In this way, they contribute to the detoxification of ammonium in the aquatic environment. In fact, the species predominant in European lakes is even clonal and shows low genetic microdiversity between different lakes. This low species diversity contrasts with marine ecosystems where this group of microorganisms predominates with much greater species richness, making the stability of ecosystem function provided by these nitrogen-converting archaea potentially vulnerable to environmental change.

Maintenance of drinking water quality
Although there is a lot of water on our planet, only 2.5% of it is fresh water. Since much of this fresh water is stored in glaciers and polar ice caps, only about 80% of it is even accessible to us humans. About 36% of drinking water in the European Union is obtained from surface waters. It is therefore crucial to understand how environmental processes such as microbial nitrification maintain this ecosystem service. The rate-determining phase of nitrification is the oxidation of ammonia, which prevents the accumulation of ammonium and converts it to nitrate via nitrite. In this way, ammonium is prevented from contaminating water sources and is necessary for its final conversion to the harmless dinitrogen gas. In this study, deep lakes on five different continents were investigated to assess the richness and evolutionary history of ammonia-oxidizing archaea. Organisms from marine habitats have traditionally colonized freshwater ecosystems. However, these archaea have had to make significant changes in their cell composition, possible only a few times during evolution, when they moved from marine habitats to freshwaters with much lower salt concentrations. The researchers identified this selection pressure as the major barrier to greater diversity of ammonia-oxidizing archaea colonizing freshwaters. The researchers were also able to determine when the few freshwater archaea first appeared. Ac-cording to the study, the dominant archaeal species in European lakes emerged only about 13 million years ago, which is quite consistent with the evolutionary history of the European lakes studied.

Slowed evolution of freshwater archaea
The major freshwater species in Europe changed relatively little over the 13 million years and spread almost clonally across Europe and Asia, which puzzled the researchers. Currently, there are not many examples of such an evolutionary break over such long time periods and over large intercontinental ranges. The authors suggest that the main factor slowing the rapid growth rates and associated evolutionary changes is the low temperatures (4 °C) at the bottom of the lakes studied. As a result, these archaea are restricted to a state of low genetic diversity. It is unclear how the extremely species-poor and evolutionarily static freshwater archaea will respond to changes induced by global climate warming and eutrophication of nearby agricultur-al lands, as the effects of climate change are more pronounced in freshwater than in marine habitats, which is associated with a loss of biodiversity.

Publication: Ngugi DK, Salcher MM, Andre A-S, Ghai R., Klotz F, Chiriac M-C, Ionescu D, Büsing P, Grossart H-S, Xing P, Priscu JC, Alymkulov S, Pester M. 2022. Postglacial adaptations enabled coloniza-tion and quasi-clonal dispersal of ammonia oxidizing archaea in modern European large lakes. Science Advances: https://www.science.org/doi/10.1126/sciadv.adc9392

Press contact:
PhDr. Sven-David Müller, Head of Public Relations, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH
Phone: ++49 (0)531/2616-300
Mail: press@dsmz.de

About the Leibniz Institute DSMZ
The Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures is the world’s most diverse collection of biological resources (bacteria, archaea, protists, yeasts, fungi, bacteriophages, plant viruses, genomic bacterial DNA as well as human and animal cell lines). Microorganisms and cell cultures are collected, investigated and archived at the DSMZ. As an institution of the Leibniz Association, the DSMZ with its extensive scientific services and biological resources has been a global partner for research, science and industry since 1969. The DSMZ was the first registered collection in Europe (Regulation (EU) No. 511/2014) and is certified according to the quality standard ISO 9001:2015. As a patent depository, it offers the only possibility in Germany to deposit biological material in accordance with the requirements of the Budapest Treaty. In addition to scientific services, research is the second pillar of the DSMZ. The institute, located on the Science Campus Braunschweig-Süd, accommodates more than 82,000 cultures and biomaterials and has around 200 employees. www.dsmz.de

PhDr. Sven David Mueller, M.Sc.
Leibniz-Institut DSMZ
+49 531 2616300
email us here
Visit us on social media:
Facebook
Twitter
LinkedIn
YouTube
Other

728x90x4

Source link

Continue Reading

Science

Scientists are closing in on why the universe exists

Published

 on

Particle astrophysicist Benjamin Tam hopes his work will help us understand a question. A very big one.

“The big question that we are trying to answer with this research is how the universe was formed,” said Tam, who is finishing his PhD at Queen’s University.

“What is the origin of the universe?”

And to answer that question, he and dozens of fellow scientists and engineers are conducting a multi-million dollar experiment two kilometres below the surface of the Canadian Shield in a repurposed mine near Sudbury, Ontario.

300x250x1
Ten thousand light-sensitive cameras send data to scientists watching for evidence of a neutrino bumping into another particle. (Tom Howell/CBC)

The Sudbury Neutrino Observatory (SNOLAB) is already famous for an earlier experiment that revealed how neutrinos ‘oscillate’ between different versions of themselves as they travel here from the sun.

This finding proved a vital point: the mass of a neutrino cannot be zero. The experiment’s lead scientist, Arthur McDonald, shared the Nobel Prize in 2015 for this discovery.

The neutrino is commonly known as the ‘ghost particle.’ Trillions upon trillions of them emanate from the sun every second. To humans, they are imperceptible except through highly specialized detection technology that alerts us to their presence.

Neutrinos were first hypothesized in the early 20th century to explain why certain important physics equations consistently produced what looked like the wrong answers. In 1956, they were proven to exist.

A digital image of a sphere that is blue and transparent with lines all over.
The neutrino detector is at the heart of the SNO+ experiment. An acrylic sphere containing ‘scintillator’ liquid is suspended inside a larger water-filled globe studded with 10,000 light-sensitive cameras. (Submitted by SNOLOAB)

Tam and his fellow researchers are now homing in on the biggest remaining mystery about these tiny particles.

Nobody knows what happens when two neutrinos collide. If it can be shown that they sometimes zap each other out of existence, scientists could conclude that a neutrino acts as its own ‘antiparticle’.

Such a conclusion would explain how an imbalance arose between matter and anti-matter, thus clarifying the current existence of all the matter in the universe.

It would also offer some relief to those hoping to describe the physical world using a model that does not imply none of us should be here.

A screengrab of two scientists wearing white hard hat helmets, clear googles and blue safety suits standing on either side of CBC producer holding a microphone. All three people are laughing.
IDEAS producer Tom Howell (centre) joins research scientist Erica Caden (left) and Benjamin Tam on a video call from their underground lab. (Screengrab: Nicola Luksic)

Guests in this episode (in order of appearance):

Benjamin Tam is a PhD student in Particle Astrophysics at Queen’s University.

Eve Vavagiakis is a National Science Foundation Astronomy and Astrophysics Postdoctoral Fellow in the Physics Department at Cornell University. She’s the author of a children’s book, I’m A Neutrino: Tiny Particles in a Big Universe.

Blaire Flynn is the senior education and outreach officer at SNOLAB.

Erica Caden is a research scientist at SNOLAB. Among her duties she is the detector manager for SNO+, responsible for keeping things running day to day.


*This episode was produced by Nicola Luksic and Tom Howell. It is part of an on-going series, IDEAS from the Trenches, some stories are below.

728x90x4

Source link

Continue Reading

Trending