adplus-dvertising
Connect with us

Science

ESO Telescope Captures Serpens Galaxy

Published

 on

A new infrared image shows a multitude of stars hidden behind the faint orange glow of the Sh2-54 nebula. The Visible and Infrared Survey Telescope for Astronomy (VISTA), based at the European Southern Observatory’s Paranal Observatory in Chile, has been used to capture this stunning stellar nursery, which is located in the constellation Serpens, in all its intricate detail.

The Sh2-54 nebula in the infrared with VISTA. Image Credit: European Southern Observatory

The stars appeared in random patterns when our ancestors looked up at the night sky. Due to its resemblance to a snake, the Greeks gave one of these “constellations” the name Serpens. They would not have been able to see the abundance of magnificent astronomical objects that can be found at the end of this constellation.

These include the Eagle, Omega, and Sh2-54 nebulae; the latter of these is shown in this stunning infrared image in a brand-new way.

Stars are created in enormous gas and dust clouds called nebulae. Astronomers have been able to identify and analyze these relatively faint objects in great detail with the help of telescopes. Sh2-54 is the official name of this nebula, which is about 6000 light-years away.

300x250x1

The ‘Sh’ stands for US astronomer Stewart Sharpless, who cataloged more than 300 nebulae in the 1950s.

The understanding of these stellar nurseries by humans is developing at the same rate as the technology used to explore the universe. One of these developments is the capacity to see light other than visible light, such as infrared.

While the dust clouds in nebulae readily absorb visible light, infrared light can almost completely pass through them. As a result, the image here reveals a wealth of stars that were concealed by clouds of dust.

This is especially helpful because it enables researchers to examine what takes place in stellar nurseries in great detail and learn more about how stars are formed.

The sensitive 67-million-pixel camera on ESO’s VISTA telescope at Paranal Observatory in Chile was used to take this infrared image. It was collected as a part of the VISTA Variables in the Via Láctea eXtended survey, or VVVX.

A large area of the Milky Way has been repeatedly observed at infrared wavelengths as part of this multi-year project, providing crucial information about stellar evolution.

Source: https://www.eso.org/public/

728x90x4

Source link

Continue Reading

Science

Rare ‘big fuzzy green ball’ comet visible in B.C. skies, a 50000-year sight

Published

 on

In the night sky, a comet is flying by Earth for the first time in 50,000 years.

Steve Coleopy, of the South Cariboo Astronomy Club, is offering some tips on how to see it before it disappears.

The green-coloured comet, named C/2022 E3 (ZTF), is not readily visible to the naked eye, although someone with good eyesight in really dark skies might be able to see it, he said. The only problem is it’s getting less visible by the day.

“Right now the comet is the closest to earth and is travelling rapidly away,” Coleopy said, noting it is easily seen through binoculars and small telescopes. “I have not been very successful in taking a picture of it yet, because it’s so faint, but will keep trying, weather permitting.”

300x250x1

At the moment, the comet is located between the bowl of the Big Dipper and the North Star but will be moving toward the Planet Mars – a steady orange-coloured point of light- in the night sky over the next couple of weeks, according to Coleopy.

“I have found it best to view the comet after 3:30 in the morning, after the moon sets,” he said. “It is still visible in binoculars even with the moon still up, but the view is more washed out because of the moonlight.”

He noted the comet looks like a “big fuzzy green ball,” as opposed to the bright pinpoint light of the stars.

“There’s not much of a tail, but if you can look through the binoculars for a short period of time, enough for your eyes to acclimatize to the image, it’s quite spectacular.”

To know its more precise location on a particular evening, an internet search will produce drawings and pictures of the comet with dates of where and when the comet will be in each daily location.

Coleopy notes the comet will only be visible for a few more weeks, and then it won’t return for about 50,000 years.


728x90x4

Source link

Continue Reading

Science

Extreme species deficit of nitrogen-converting microbes in European lakes

Published

 on

Sampling of Lake Constance water from 85 m depth, in which ammonia-oxidizing archaea make up as much as 40% of all microorganisms

Dr. David Kamanda Ngugi, environmental microbiologist at the Leibniz Institute DSMZ

300x250x1

Leibniz Institute DSMZ

 

An international team of researchers led by microbiologists from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH in Braunschweig, Germany, shows that in the depths of European lakes, the detoxification of ammonium is ensured by an extremely low biodiversity of archaea. The researchers recently published their findings in the prestigious international journal Science Advances. The team led by environmental microbiologists from the Leibniz Institute DSMZ has now shown that the species diversity of these archaea in lakes around the world ranges from 1 to 15 species. This is of particularly concern in the context of global biodiversity loss and the UN Biodiversity Conference held in Montreal, Canada, in December 2022. Lakes play an important role in providing freshwater for drinking, inland fisheries, and recreation. These ecosystem services would be at danger from ammonium enrichment. Ammonium is an essential component of agricultural fertilizers and contributes to its remarkable increase in environmental concentrations and the overall im-balance of the global nitrogen cycle. Nutrient-poor lakes with large water masses (such as Lake Constance and many other pre-alpine lakes) harbor enormously large populations of archaea, a unique class of microorganisms. In sediments and other low-oxygen environments, these archaea convert ammonium to nitrate, which is then converted to inert dinitrogen gas, an essential component of the air. In this way, they contribute to the detoxification of ammonium in the aquatic environment. In fact, the species predominant in European lakes is even clonal and shows low genetic microdiversity between different lakes. This low species diversity contrasts with marine ecosystems where this group of microorganisms predominates with much greater species richness, making the stability of ecosystem function provided by these nitrogen-converting archaea potentially vulnerable to environmental change.

Maintenance of drinking water quality
Although there is a lot of water on our planet, only 2.5% of it is fresh water. Since much of this fresh water is stored in glaciers and polar ice caps, only about 80% of it is even accessible to us humans. About 36% of drinking water in the European Union is obtained from surface waters. It is therefore crucial to understand how environmental processes such as microbial nitrification maintain this ecosystem service. The rate-determining phase of nitrification is the oxidation of ammonia, which prevents the accumulation of ammonium and converts it to nitrate via nitrite. In this way, ammonium is prevented from contaminating water sources and is necessary for its final conversion to the harmless dinitrogen gas. In this study, deep lakes on five different continents were investigated to assess the richness and evolutionary history of ammonia-oxidizing archaea. Organisms from marine habitats have traditionally colonized freshwater ecosystems. However, these archaea have had to make significant changes in their cell composition, possible only a few times during evolution, when they moved from marine habitats to freshwaters with much lower salt concentrations. The researchers identified this selection pressure as the major barrier to greater diversity of ammonia-oxidizing archaea colonizing freshwaters. The researchers were also able to determine when the few freshwater archaea first appeared. Ac-cording to the study, the dominant archaeal species in European lakes emerged only about 13 million years ago, which is quite consistent with the evolutionary history of the European lakes studied.

Slowed evolution of freshwater archaea
The major freshwater species in Europe changed relatively little over the 13 million years and spread almost clonally across Europe and Asia, which puzzled the researchers. Currently, there are not many examples of such an evolutionary break over such long time periods and over large intercontinental ranges. The authors suggest that the main factor slowing the rapid growth rates and associated evolutionary changes is the low temperatures (4 °C) at the bottom of the lakes studied. As a result, these archaea are restricted to a state of low genetic diversity. It is unclear how the extremely species-poor and evolutionarily static freshwater archaea will respond to changes induced by global climate warming and eutrophication of nearby agricultur-al lands, as the effects of climate change are more pronounced in freshwater than in marine habitats, which is associated with a loss of biodiversity.

Publication: Ngugi DK, Salcher MM, Andre A-S, Ghai R., Klotz F, Chiriac M-C, Ionescu D, Büsing P, Grossart H-S, Xing P, Priscu JC, Alymkulov S, Pester M. 2022. Postglacial adaptations enabled coloniza-tion and quasi-clonal dispersal of ammonia oxidizing archaea in modern European large lakes. Science Advances: https://www.science.org/doi/10.1126/sciadv.adc9392

Press contact:
PhDr. Sven-David Müller, Head of Public Relations, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH
Phone: ++49 (0)531/2616-300
Mail: press@dsmz.de

About the Leibniz Institute DSMZ
The Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures is the world’s most diverse collection of biological resources (bacteria, archaea, protists, yeasts, fungi, bacteriophages, plant viruses, genomic bacterial DNA as well as human and animal cell lines). Microorganisms and cell cultures are collected, investigated and archived at the DSMZ. As an institution of the Leibniz Association, the DSMZ with its extensive scientific services and biological resources has been a global partner for research, science and industry since 1969. The DSMZ was the first registered collection in Europe (Regulation (EU) No. 511/2014) and is certified according to the quality standard ISO 9001:2015. As a patent depository, it offers the only possibility in Germany to deposit biological material in accordance with the requirements of the Budapest Treaty. In addition to scientific services, research is the second pillar of the DSMZ. The institute, located on the Science Campus Braunschweig-Süd, accommodates more than 82,000 cultures and biomaterials and has around 200 employees. www.dsmz.de

PhDr. Sven David Mueller, M.Sc.
Leibniz-Institut DSMZ
+49 531 2616300
email us here
Visit us on social media:
Facebook
Twitter
LinkedIn
YouTube
Other

728x90x4

Source link

Continue Reading

Science

Scientists are closing in on why the universe exists

Published

 on

Particle astrophysicist Benjamin Tam hopes his work will help us understand a question. A very big one.

“The big question that we are trying to answer with this research is how the universe was formed,” said Tam, who is finishing his PhD at Queen’s University.

“What is the origin of the universe?”

And to answer that question, he and dozens of fellow scientists and engineers are conducting a multi-million dollar experiment two kilometres below the surface of the Canadian Shield in a repurposed mine near Sudbury, Ontario.

300x250x1
Ten thousand light-sensitive cameras send data to scientists watching for evidence of a neutrino bumping into another particle. (Tom Howell/CBC)

The Sudbury Neutrino Observatory (SNOLAB) is already famous for an earlier experiment that revealed how neutrinos ‘oscillate’ between different versions of themselves as they travel here from the sun.

This finding proved a vital point: the mass of a neutrino cannot be zero. The experiment’s lead scientist, Arthur McDonald, shared the Nobel Prize in 2015 for this discovery.

The neutrino is commonly known as the ‘ghost particle.’ Trillions upon trillions of them emanate from the sun every second. To humans, they are imperceptible except through highly specialized detection technology that alerts us to their presence.

Neutrinos were first hypothesized in the early 20th century to explain why certain important physics equations consistently produced what looked like the wrong answers. In 1956, they were proven to exist.

A digital image of a sphere that is blue and transparent with lines all over.
The neutrino detector is at the heart of the SNO+ experiment. An acrylic sphere containing ‘scintillator’ liquid is suspended inside a larger water-filled globe studded with 10,000 light-sensitive cameras. (Submitted by SNOLOAB)

Tam and his fellow researchers are now homing in on the biggest remaining mystery about these tiny particles.

Nobody knows what happens when two neutrinos collide. If it can be shown that they sometimes zap each other out of existence, scientists could conclude that a neutrino acts as its own ‘antiparticle’.

Such a conclusion would explain how an imbalance arose between matter and anti-matter, thus clarifying the current existence of all the matter in the universe.

It would also offer some relief to those hoping to describe the physical world using a model that does not imply none of us should be here.

A screengrab of two scientists wearing white hard hat helmets, clear googles and blue safety suits standing on either side of CBC producer holding a microphone. All three people are laughing.
IDEAS producer Tom Howell (centre) joins research scientist Erica Caden (left) and Benjamin Tam on a video call from their underground lab. (Screengrab: Nicola Luksic)

Guests in this episode (in order of appearance):

Benjamin Tam is a PhD student in Particle Astrophysics at Queen’s University.

Eve Vavagiakis is a National Science Foundation Astronomy and Astrophysics Postdoctoral Fellow in the Physics Department at Cornell University. She’s the author of a children’s book, I’m A Neutrino: Tiny Particles in a Big Universe.

Blaire Flynn is the senior education and outreach officer at SNOLAB.

Erica Caden is a research scientist at SNOLAB. Among her duties she is the detector manager for SNO+, responsible for keeping things running day to day.


*This episode was produced by Nicola Luksic and Tom Howell. It is part of an on-going series, IDEAS from the Trenches, some stories are below.

728x90x4

Source link

Continue Reading

Trending