Connect with us

Science

Facebook teaches AI-powered robot to adapt while walking – CNET

Published

 on


Facebook taught a four-legged robot created by Chinese startup Unitree to adapt as it was walking on different surfaces.


Getty Images

The four-legged robot resembles a dog walking over sand, rocks and other difficult surfaces. As it moves forward, the black robot adjusts its stride and adapts without falling. 

Teaming up with Carnegie Mellon University’s School of Computer Science and the University of California, Berkeley, Facebook’s AI research team taught the unnamed robot how to adjust to different conditions in real time, the team said Friday. In a video, the robot, which was created by Chinese startup Unitree, adjusts how it walks as it moves over stones, down stairs, through a construction site and around outdoor terrain. 

Inside a living room, researchers poured oil on plastic to create a slick surface. They piled planks and other obstacles. They dropped weight on the robot’s back. Each time, the robot recovered its balance and continued forward.

Jitendra Malik, a UC Berkeley professor who works on Facebook’s AI research team, said the robot learned how to adapt quickly through trial and error, and through information it gathers from its surroundings. The robot, which doesn’t have computer vision, is learning from how its body reacts on different surfaces, a process similar to the way humans learn. When people move from a hard surface to sand, for example, they adjust their steps once they figure out their foot is sinking. “The challenges of robotics are that there is a lot of this real-world variability,” Malik said.

Using a combination of two techniques, researchers trained the AI-controlled robot in a computer simulation, exposing the machine to a variety of surfaces and more-grueling conditions before testing it in the real world. The team calls this AI breakthrough Rapid Motor Adaptation, noting it’s the “first entirely learning-based system to enable a legged robot to adapt to its environment from scratch by exploring and interacting with the world.”

The AI advancement, Facebook says, could improve the performance of robots used in search and rescue operations, as well as at home, where machines have to navigate stairs and other objects. The research could also be applied to smart cities that use real-time data to mitigate traffic and other conditions that could hinder a resident’s quality of life. 

Robots can be preprogrammed to navigate some environments, but it’s tough for a programmer to predict every obstacle a machine could encounter. Teaching a robot how to adapt in real time could also work on cheaper hardware, possibly helping to drive down costs in the future.

Because of the coronavirus pandemic, the AI researchers had to change the way they conducted their experiments, because the lab was closed. Ashish Kumar, a graduate student at UC Berkeley, said he tested the robot in his home, on hiking trails in the Bay Area and at a nearby construction site. 

“It was whatever I could find in some sense,” Kumar said. The robot also broke multiple times during the testing. 

The RMA-enabled robot outperformed alternative systems, and was able to walk on sand, mud, trains, tall grass and a dirt pile without falling, according to a paper. It was successful in 70% of the trials in which it had to walk down stairs on a hiking trail. It didn’t fall in 80% of tests that had it walk through a pile of cement and a pile of pebbles, the paper said. 

Adblock test (Why?)



Source link

Continue Reading

Science

G2V Optics soars on aerospace opportunities – Taproot Edmonton

Published

 on


G2V Optics has sent solar simulators to NASA to help test a spacecraft that aims to solve Earth’s growing space-junk problem. It’s the latest success in the Edmonton-based company’s evolution toward using its “Engineered Sunlight” technology to help aerospace organizations know what to expect from the sun once they get their devices into orbit.

“It’s a huge project, and … a fantastic feather in the cap of everybody in our team who worked on it,” G2V Optics CEO Ryan Tucker told Taproot. “And I think an awesome thing for Edmonton and our technology.”

G2V Optics has received US$822,100 in contracts from NASA since 2021. This project, the culmination of a two-year procurement process, is for the testing of OSAM-1, a spacecraft that is scheduled to be launched in 2026 to service Landsat 7, a satellite that is past its prime. If OSAM-1 can successfully dock with Landsat 7 and refuel it, then NASA will be a step closer to increasing the life expectancy of satellites, even those that were not designed to be serviced in orbit, and decrease the number of out-of-commission craft at risk of smashing into each other around our planet.

This is not the first foray into the space business for G2V Optics. In addition to a previous contract with NASA laboratories, the company has been working with the Centre nationale d’études spatiales (CNES) in France to enable the testing of technology involved in the 2024 Martian Moons eXploration (MMX) mission, in which a rover will land on Phobos and fly by Deimos.

“We don’t put anything into space. But we’re creating all the photons to make sure that everything works when they send it there,” Tucker said, noting that it’s fun to have a preview of the space research going on. “We kind of get to peek behind the curtain of these really interesting and exciting space exploration missions before they become public.”

Space is not where G2V Optics started when it was founded in 2015. After founder and CTO Michael Taschuk first developed the company’s light-emitting diode technology at the National Institute for Nanotechnology at the University of Alberta, its first applications tended to be in food production, specifically to maximize the efficacy of vertical farming.

“From a technical perspective, (we) did remarkable things,” Tucker said. “We were able to grow 30% more biomass with the same amount of energy and improve what was possible by using the complexity of our technology. But we realized that we were too early for that market … it’s such a nascent industry that’s dealing with its own challenges around scaling.”

At the same time, solar cell researchers and aerospace companies were ready for what G2V makes.

“We all of a sudden started working in this sector, with this more complex requirement, that was a perfect fit for what we had developed,” Tucker said. “That’s the traction that you’re looking for, right? Your job as a startup is to find that fit. And it wasn’t exactly where we thought it was. But we were, I like to think, smart enough to listen to it and to chase it when we found it.”

Adblock test (Why?)



Source link

Continue Reading

Science

NASA rocket launches to test new orbit for moon missions – CBC News

Published

 on


NASA wants to experiment with a new orbit around the moon that it hopes to use in the coming years to once again land astronauts on the lunar surface.

So it is sending up a test satellite from New Zealand. The initial stages of the launch went according to plan late Tuesday, with the rocket carrying the satellite reaching space.

If the rest of the mission is successful, the CAPSTONE CubeSat satellite — only about the size of a microwave oven — will be the first to take the new path around the moon and will send back vital information for at least six months.

Technically, the new orbit is called a near-rectilinear halo orbit. It’s a stretched-out egg shape with one end passing close to the moon and the other far from it.

Imagine stretching a rubber band back from your thumb. Your thumb would represent the moon and the rubber band the flight path.

“It will have equilibrium. Poise. Balance,” NASA wrote on its website. “This pathfinding CubeSat will practically be able to kick back and rest in a gravitational sweet spot in space — where the pull of gravity from Earth and the Moon interact to allow for a nearly-stable orbit.”

Eventually, NASA plans to put a space station called Gateway into the orbital path, from which astronauts can descend to the moon’s surface as part of its Artemis program.

Group effort

For the satellite mission, NASA teamed up with two commercial companies. California-based Rocket Lab launched the rocket carrying the satellite, which in turn is owned and operated by Colorado-based Advanced Space.

The mission came together relatively quickly and cheaply for NASA, with the total mission cost put at $32.7 million.

Getting the 25-kilogram satellite into orbit will take more than four months and be done in three stages.

First, Rocket Lab’s small Electron rocket launched from New Zealand’s Mahia Peninsula. Just nine minutes later, the second stage called Photon separated and went into orbit around Earth. Over the next five days, Photon’s engines are scheduled to fire periodically to raise its orbit further and further from Earth.

Six days after the launch, Photon’s engines will fire a final time, allowing it to escape Earth’s orbit and head for the moon.

Photon will then release the satellite, which has its own small propulsion system but which won’t use much energy as it cruises toward the moon over four months, with a few planned trajectory course corrections along the way.

“Perfect Electron launch!” Rocket Lab founder Peter Beck tweeted Tuesday. “Lunar photon is in Low Earth Orbit.”

Rocket Lab spokesperson Morgan Bailey said it was the most ambitious and complex mission it has undertaken so far and comes after more than two years of work with NASA and Advanced Space. She said it will be the first time Rocket Lab has tested its HyperCurie engine that will be used to power Photon.

“Certainly lots of hard problems to solve along the way, but we’ve ticked them off one by one, and made it to launch day,” Bailey said.

Bailey said one of the advantages of the orbit is that, theoretically, a space station should be able to maintain continuous communication with Earth because it will avoid being eclipsed by the moon.

Adblock test (Why?)



Source link

Continue Reading

Science

NASA discovers double crater on the moon – CTV News

Published

 on


The moon has a new double crater after a rocket body collided with its surface on March 4.

New images shared by NASA’s Lunar Reconnaissance Orbiter, which has been circling the moon since 2009, have revealed the location of the unusual crater.

The impact created two craters that overlap, an eastern crater measuring 59 feet (18 metres) across and a western crater spanning 52.5 feet (16 metres). Together, they create a depression that is roughly 91.8 feet (28 metres) wide in the longest dimension.

Although astronomers expected the impact after discovering that the rocket part was on track to collide with the moon, the double crater it created was a surprise.

Typically, spent rockets have the most mass at the motor end because the rest of the rocket is largely just an empty fuel tank. But the double crater suggests that this object had large masses at both ends when it hit the moon.

The exact origin of the rocket body, a piece of space junk that had been careening around for years, is unclear, so the double crater could help astronomers determine what it was.

The moon lacks a protective atmosphere, so it’s littered with craters created when objects like asteroids regularly slam into the surface.

This was the first time a piece of space junk unintentionally hit the lunar surface that experts know of. But craters have resulted from spacecraft being deliberately crashed into the moon.

For example, four large moon craters attributed to the Apollo 13, 14, 15 and 17 missions are all much larger than each of the overlapping craters created during the March 4 impact. However, the maximum width of the new double crater is similar to the Apollo craters.

UNCLEAR ORIGIN

Bill Gray, an independent researcher focused on orbital dynamics and the developer of astronomical software, was first to spot the trajectory of the rocket booster.

Gray had initially identified it as the SpaceX Falcon rocket stage that launched the US Deep Space Climate Observatory, or DSCOVR, in 2015 but later said he’d gotten that wrong and it was likely from a 2014 Chinese lunar mission — an assessment NASA agreed with.

However, China’s Ministry of Foreign Affairs denied the booster was from its Chang’e-5 moon mission, saying that the rocket in question burned up on reentry to Earth’s atmosphere.

No agencies systematically track space debris so far away from Earth, and the confusion over the origin of the rocket stage has underscored the need for official agencies to monitor deep-space junk more closely, rather than relying on the limited resources of private individuals and academics.

However, experts say that the bigger challenge is the space debris in low-Earth orbit, an area where it can collide with functioning satellites, create more junk and threaten human life on crewed spacecraft.

There are at least 26,000 pieces of space junk orbiting Earth that are the size of a softball or larger and could destroy a satellite on impact; over 500,000 objects the size of a marble — big enough to cause damage to spacecraft or satellites; and over 100 million pieces the size of a grain of salt, tiny debris that could nonetheless puncture a spacesuit, according to a NASA report issued last year.

Adblock test (Why?)



Source link

Continue Reading

Trending