adplus-dvertising
Connect with us

Science

Further Back in Time Than Ever Before: Distribution of Dark Matter Around Galaxies 12 Billion Years Ago Revealed – SciTechDaily

Published

 on


The radiation residue from the Big Bang, distorted by dark matter 12 billion years ago. Credit: Reiko Matsushita

Scientists investigated the nature of dark matter surrounding galaxies seen as they were 12 billion years ago, billions of years further back in time than ever before. Their findings offer the tantalizing possibility that the fundamental rules of cosmology may differ when examining the early history of our universe. The collaboration was led by scientists at <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

300x250x1
Nagoya University
Nagoya University, sometimes abbreviated as NU, is a Japanese national research university located in Chikusa-ku, Nagoya. It was the seventh Imperial University in Japan, one of the first five Designated National University and selected as a Top Type university of Top Global University Project by the Japanese government. It is one of the highest ranked higher education institutions in Japan.

” data-gt-translate-attributes=”["attribute":"data-cmtooltip", "format":"html"]”>Nagoya University in Japan and the findings were published today (August 1) in the journal Physical Review Letters.

Seeing something that happened such a long time ago is challenging. Because of the speed of light is finite, we see distant galaxies not as they are today, but as they were billions of years ago. But even more difficult is observing dark matter, which does not emit light.

“It was a crazy idea. No one realized we could do this.” — Professor Masami Ouchi

Consider a distant source galaxy, even farther away than the target galaxy whose dark matter one wants to investigate. As predicted by Einstein’s theory of general relativity, the gravitational attraction of the foreground galaxy, including its dark matter, distorts the surrounding space and time. As the light from the source galaxy travels through this distortion in spacetime, it bends, changing the apparent shape of the galaxy. The greater the amount of dark matter, the greater the resulting distortion. Therefore, astronomers can measure the amount of dark matter around the foreground galaxy (the “lens” galaxy) from the distortion.

However, beyond a certain threshold, scientists encounter a problem. In the deepest reaches of the universe, the galaxies are incredibly faint. As a result, the farther away from Earth we look, the less effective the gravitational lensing technique becomes. Because the lensing distortion is subtle and difficult to detect in most cases, many background galaxies are needed to detect the signal.

Most previous studies have remained stuck at the same limits. Unable to detect enough distant source galaxies to measure the distortion, they could only analyze dark matter from no more than 8-10 billion years ago. These limitations left open the question of the distribution of dark matter between this time and 13.7 billion years ago, around the beginning of our universe.

To overcome these challenges and observe dark matter from the farthest reaches of the universe, a team of researchers led by Hironao Miyatake from Nagoya University, in collaboration with the University of Tokyo, the National Astronomical Observatory of Japan, and Princeton University, used a different source of background light, the microwaves released from the Big Bang itself.

First, using data from the observations of the Subaru Hyper Suprime-Cam Survey (HSC), the team identified 1.5 million lens galaxies using visible light, selected to be seen 12 billion years ago.

Next, to overcome the lack of galaxy light even farther away, they employed microwaves from the cosmic microwave background (CMB), the radiation residue from the <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

Big Bang
The Big Bang is the leading cosmological model explaining how the universe as we know it began approximately 13.8 billion years ago.

” data-gt-translate-attributes=”["attribute":"data-cmtooltip", "format":"html"]”>Big Bang. Using microwaves observed by the European Space Agency’s Planck satellite, the team measured how the dark matter around the lens galaxies distorted the microwaves.

“Look at dark matter around distant galaxies?” asked Professor Masami Ouchi of the University of Tokyo, who made many of the observations. “It was a crazy idea. No one realized we could do this. But after I gave a talk about a large distant galaxy sample, Hironao came to me and said it may be possible to look at dark matter around these galaxies with the CMB.”

“Most researchers use source galaxies to measure dark matter distribution from the present to eight billion years ago,” added Assistant Professor Yuichi Harikane of the Institute for Cosmic Ray Research, University of Tokyo. “However, we could look further back into the past because we used the more distant CMB to measure dark matter. For the first time, we were measuring dark matter from almost the earliest moments of the universe.”

After a preliminary analysis, the scientists soon realized that they had a large enough sample to detect the distribution of dark matter. Combining the large distant galaxy sample and the lensing distortions in CMB, they detected dark matter even further back in time, from 12 billion years ago. This is only 1.7 billion years after the beginning of the universe, and thus these galaxies are seen soon after they first formed.

“I was happy that we opened a new window into that era,” Miyatake said. “12 billion years ago, things were very different. You see more galaxies that are in the process of formation than at the present; the first galaxy clusters are starting to form as well.” Galaxy clusters comprise 100-1000 galaxies bound by gravity with large amounts of dark matter.

“This result gives a very consistent picture of galaxies and their evolution, as well as the dark matter in and around galaxies, and how this picture evolves with time,” said Neta Bahcall, Eugene Higgins Professor of Astronomy, professor of astrophysical sciences, and director of undergraduate studies at <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

Princeton University
Founded in 1746, Princeton University is a private Ivy League research university in Princeton, New Jersey and the fourth-oldest institution of higher education in the United States. It provides undergraduate and graduate instruction in the humanities, social sciences, natural sciences, and engineering.

” data-gt-translate-attributes=”["attribute":"data-cmtooltip", "format":"html"]”>Princeton University.

One of the most exciting discoveries from the study was related to the clumpiness of dark matter. According to the standard theory of cosmology, the Lambda-CDM model, subtle fluctuations in the CMB form pools of densely packed matter by attracting surrounding matter through gravity. This creates inhomogeneous clumps that form stars and galaxies in these dense regions. The group’s findings suggest that their clumpiness measurement was lower than predicted by the Lambda-CDM model.

Miyatake is enthusiastic about the possibilities. “Our finding is still uncertain,” he said. “But if it is true, it would suggest that the entire model is flawed as you go further back in time. This is exciting because if the result holds after the uncertainties are reduced, it could suggest an improvement of the model that may provide insight into the nature of dark matter itself.”

“At this point, we will try to get better data to see if the Lambda-CDM model is actually able to explain the observations that we have in the universe,” said Andrés Plazas Malagón, associate research scholar at Princeton University. “And the consequence may be that we need to revisit the assumptions that went into this model.”

“One of the strengths of looking at the universe using large-scale surveys, such as the ones used in this research, is that you can study everything that you see in the resulting images, from nearby asteroids in our solar system to the most distant galaxies from the early universe. You can use the same data to explore a lot of new questions,” said Michael Strauss, professor and chair of the Department of Astrophysical Sciences at Princeton University.

This study used data available from existing telescopes, including Planck and Subaru. The group has only reviewed a third of the Subaru Hyper Suprime-Cam Survey data. The next step will be to analyze the entire data set, which should allow for a more precise measurement of the dark matter distribution. In the future, the research team expects to use an advanced data set like the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST) to explore more of the earliest parts of space. “LSST will allow us to observe half the sky,” Harikane said. “I don’t see any reason we couldn’t see the dark matter distribution 13 billion years ago next.”

Reference: “First Identification of a CMB Lensing Signal Produced by 1.5 Million Galaxies at z~4: Constraints on Matter Density Fluctuations at High Redshift” by Hironao Miyatake, Yuichi Harikane, Masami Ouchi, Yoshiaki Ono, Nanaka Yamamoto, Atsushi J. Nishizawa, Neta Bahcall, Satoshi Miyazaki and Andrés A. Plazas Malagón, 1 August 2022, Physical Review Letters.
DOI: 10.1103/PhysRevLett.129.061301

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

April 20: Why this Indigenous researcher thinks we can do science differently and more… – CBC.ca

Published

 on


Quirks and Quarks54:00Why this Indigenous researcher thinks we can do science differently, and more…


On this episode of Quirks & Quarks with Bob McDonald:

300x250x1

This researcher wants a new particle accelerator to use before she’s dead

Quirks and Quarks9:05This researcher wants a new particle accelerator to use before she’s dead

Physicists exploring the nature of reality need ever more capable particle colliders, so they’re exploring a successor to the Large Hadron Collider in Europe. But that new machine is at least decades away. Tova Holmes, an assistant professor at the University of Tennessee, Knoxville, is one of the physicists calling for a different kind of collider that can come online before the end of her career – or her life. This device would use a particle not typically used in particle accelerators: the muon.

A 2021 CERN file photo of the Large Hadron Collider inside the 27-kilometre tunnel near Geneva, Switzerland. The proposed new particle accelerator would require an even larger tunnel, one that’s over 100 kilometres. Physicists calling for the development of a muon accelerator say it will require much less space. (Samuel Joseph Hertzog/CERN)

Is venting the best way to deal with anger? The scientist says chill out.

Quirks and Quarks6:51Is venting the best way to deal with anger? The scientist says chill out

It turns out that acting out your anger might not be the best way to get rid of it. Sophie Kjaervik, a researcher at Virginia Commonwealth University in Richmond, Va., analyzed 154 studies of the different ways to deal with anger. Her results, published in the journal Clinical Psychology Review, suggest that techniques that reduce your heart rate and calm your mind are more effective than blowing off steam.


High intensity wildfires may release toxic forms of metals

Quirks and Quarks8:37High intensity wildfires may release toxic forms of metals

Wildfire smoke might be more dangerous than you think. A recent study in the journal Nature Communications found that when wildfires pass over soils or rocks rich in a normally harmless metal called chromium, it is transformed into a toxic form. The hotter and more intense the wildfire is, the more of this metal becomes toxic. Scott Fendorf, an Earth system science professor at Stanford University, said this study shows we should factor in the type of geology wildfires pass over to provide more targeted air quality warnings about smoke risks. 

A man sitting on a balcony with the backdrop of Montreal's skyline behind him is talking on the phone while wearing two masks: one surgical one still on his face and a black one that in this photo is pulled down below his chin.
A man wears a face mask as he cycles by the skyline of Montreal, Sunday, June 25, 2023. A smog warning is in effect for Montreal and multiple regions of the province due to forest fires. (Graham Hughes/The Canadian Press)

AI might help solve the problem of runaway conspiracy theories

Quirks and Quarks7:35AI might help solve the problem of runaway conspiracy theories

Conspiracy theories seem to have multiplied in the internet era and so far, we haven’t had much luck in debunking these beliefs. The preliminary findings of a new study on PsyArXiv, a site for psychology studies that have yet to be peer-reviewed, suggests that artificial intelligence may have more success. Thomas Costello, a postdoctoral psychology researcher at MIT was the lead author on this study, and said their findings can provide a window into how to better debunk conspiracy beliefs. 

One eye takes up the entire frame and directly in the centre of their pupil, you see the reflection of the ChatGPT logo.
This illustration photograph taken with a macro lens shows The OpenAI company logo reflected in a human eye at a studio in Paris on June 6, 2023. ChatGPT is a conversational artificial intelligence software application developed by OpenAI. (Joel Saget/AFP/Getty Images)

An Indigenous scientist explores the medicine the Earth needs

Quirks and Quarks19:12An Indigenous ecologist on why we need to stop and listen to save the planet

Earth day is April 22. And Earth is not in great shape to celebrate the day. Overheated, overpopulated, overexploited – we’re not being particularly careful with our planet. We talk to Indigenous ecologist Jennifer Grenz of the University of British Columbia about her new book, which is part memoir, part prescription for the medicine our planet needs – a compound of science and traditional wisdom.  Her book is Medicine Wheel for the Planet: A journey toward personal and ecological healing.

READ MORE: An Indigenous ecologist on why we need to stop and listen to save the planet

A shot of a woman wearing big green glasses outside, looking at a tree branch.
Jennifer Grenz is an Indigenous Ecologist and author of Medicine Wheel for the Planet: A journey toward personal and ecological healing. (Paulo Ramos/UBC)

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Dragonfly: NASA greenlights most important mission of the century – Earth.com

Published

 on


In a remarkable development, NASA has given the green light to the Dragonfly mission, a revolutionary rotorcraft designed to investigate the complex chemistry of Saturn‘s moon Titan.

This confirmation allows the mission to proceed with the final design, construction, and testing of the spacecraft and its scientific instruments.

Deciphering the prebiotic chemistry on Titan

The Dragonfly mission, led by Dr. Melissa Trainer of NASA’s Goddard Space Flight Center, will carry a cutting-edge instrument called the Dragonfly Mass Spectrometer (DraMS).

300x250x1

This powerful tool will help scientists delve into the intricate chemistry at work on Titan, potentially shedding light on the chemical processes that led to the emergence of life on Earth, known as prebiotic chemistry.

“We want to know if the type of chemistry that could be important for early pre-biochemical systems on Earth is taking place on Titan,” explains Dr. Trainer, a planetary scientist and astrobiologist specializing in Titan.

Titan: Dragonfly’s target

Titan, the largest moon of Saturn, is shrouded in a dense nitrogen-rich atmosphere, bears a striking resemblance to Earth in many ways. With a diameter of 5,150 kilometers, Titan is the second-largest moon in our solar system, surpassed only by Jupiter’s Ganymede.

Dense atmosphere and unique climate

One of Titan’s most distinctive features is its thick atmosphere, which is composed primarily of nitrogen and methane. This dense atmosphere creates a surface pressure 1.5 times higher than Earth’s, making it the only moon in our solar system with a substantial atmosphere.

The presence of methane in Titan’s atmosphere leads to a fascinating hydrological cycle, similar to Earth’s water cycle, but with methane as the primary liquid.

Titan’s surface is dotted with numerous lakes and seas of liquid hydrocarbons, predominantly methane and ethane. These liquid bodies, some of which are larger than the Great Lakes on Earth, are the result of Titan’s unique climate and atmospheric conditions.

The Cassini mission, which explored the Saturn system from 2004 to 2017, provided stunning images and data of these extraterrestrial lakes and seas.

Dragonfly mission to search Titan for prebiotic chemistry and life

The complex chemistry occurring on Titan’s surface and in its atmosphere has drawn significant attention from astrobiologists.

With its abundant organic compounds and the presence of liquid methane, Titan is considered a prime candidate for studying prebiotic chemistry and the potential for life to emerge in environments different from Earth.

Beneath Titan’s icy crust lies another intriguing feature: a global subsurface ocean of liquid water and ammonia. This ocean, which is believed to be salty and have a high pH, may potentially host microbial life.

The presence of this subsurface ocean, along with the unique chemistry on Titan’s surface, makes this moon a fascinating target for future exploration and scientific research.

Pushing the boundaries of rotorcraft exploration

Nicky Fox, associate administrator of the Science Mission Directorate at NASA Headquarters, emphasized the significance of the Dragonfly mission, stating, “Exploring Titan will push the boundaries of what we can do with rotorcraft outside of Earth.”

Titan’s unique characteristics, including its abundant complex carbon-rich chemistry, interior ocean, and past presence of liquid water on the surface, make it an ideal destination for studying prebiotic chemical processes and the potential habitability of an extraterrestrial environment.

Innovative design and cutting-edge technology

The Dragonfly robotic rotorcraft will leverage Titan’s low gravity and dense atmosphere to fly between different points of interest on the moon’s surface, spanning several miles apart.

This innovative approach allows the entire suite of instruments to be relocated to new sites once the previous one has been thoroughly explored, providing access to samples from diverse geological environments.

DraMS, developed by the same team responsible for the Sample Analysis at Mars (SAM) instrument suite aboard the Curiosity rover, will analyze surface samples using techniques tested on Mars.

Dr. Trainer emphasized the benefits of this heritage, stating, “This design has given us an instrument that’s very flexible, that can adapt to the different types of surface samples.”

Dragonfly mission challenges and funding

The Dragonfly mission successfully passed its Preliminary Design Review in early 2023. However, due to funding constraints, the mission was asked to develop an updated budget and schedule.

The revised plan, presented and conditionally approved in November 2023, hinged on the outcome of the fiscal year 2025 budget process.

With the release of the president’s fiscal year 2025 budget request, Dragonfly is now confirmed with a total lifecycle cost of $3.35 billion and a launch date set for July 2028.

This reflects a cost increase of approximately two times the initially proposed cost and a delay of more than two years from the original selection in 2019.

Despite the challenges posed by funding constraints, the COVID-19 pandemic, supply chain issues, and an in-depth design iteration, NASA remains committed to the Dragonfly mission.

Additional funding has been provided for a heavy-lift launch vehicle to shorten the mission’s cruise phase and compensate for the delayed arrival at Titan.

Rigorous testing and validation

To ensure the success of the Dragonfly mission, researchers on Earth have conducted extensive testing and validation of the designs and models for the nuclear-powered, car-sized drone.

The mission team has carried out test campaigns at NASA’s Langley Research Center, utilizing the Subsonic Tunnel and the Transonic Dynamics Tunnel (TDT) to validate computational fluid dynamics models and gather data under simulated Titan atmospheric conditions.

Ken Hibbard, Dragonfly mission systems engineer at APL, emphasized the importance of these tests, stating, “All of these tests feed into our Dragonfly Titan simulations and performance predictions.”

As the Dragonfly mission progresses, it marks a new era of exploration and scientific discovery. Dr. Trainer expressed her excitement, saying, “Dragonfly is a spectacular science mission with broad community interest, and we are excited to take the next steps on this mission.”

Turning science fiction into fact with the Dragonfly mission

In summary, the Dragonfly mission embodies the essence of human curiosity and the relentless pursuit of knowledge. As NASA prepares to send this revolutionary rotorcraft to the alien world of Titan, we stand on the brink of a new era of exploration and discovery.

With its innovative design, cutting-edge technology, and the unwavering dedication of the mission team, Dragonfly will unlock the secrets of prebiotic chemistry and shed light on the potential for life beyond Earth.

As we eagerly await the launch of this titanic mission, we can only imagine the wonders that await us on Saturn’s enigmatic moon. The Dragonfly mission is a testament to the indomitable human spirit and our boundless capacity to push the frontiers of knowledge.

In the words of Ken Hibbard, “With Dragonfly, we’re turning science fiction into exploration fact,” and that fact will undoubtedly inspire generations to come.

—–

Like what you read? Subscribe to our newsletter for engaging articles, exclusive content, and the latest updates.

Check us out on EarthSnap, a free app brought to you by Eric Ralls and Earth.com.

—–

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Marine plankton could act as alert in mass extinction event: UVic researcher – Langley Advance Times

Published

 on


A University of Victoria micropaleontologist found that marine plankton may act as an early alert system before a mass extinction occurs.

With help from collaborators at the University of Bristol and Harvard, Andy Fraass’ newest paper in the Nature journal shows that after an analysis of fossil records showed that plankton community structures change before a mass extinction event.

“One of the major findings of the paper was how communities respond to climate events in the past depends on the previous climate,” Fraass said in a news release. “That means that we need to spend a lot more effort understanding recent communities, prior to industrialization. We need to work out what community structure looked like before human-caused climate change, and what has happened since, to do a better job at predicting what will happen in the future.”

300x250x1

According to the release, the fossil record is the most complete and extensive archive of biological changes available to science and by applying advanced computational analyses to the archive, researchers were able to detail the global community structure of the oceans dating back millions of years.

A key finding of the study was that during the “early eocene climatic optimum,” a geological era with sustained high global temperatures equivalent to today’s worst case global warming scenarios, marine plankton communities moved to higher latitudes and only the most specialized plankton remained near the equator, suggesting that the tropical temperatures prevented higher amounts of biodiversity.

“Considering that three billion people live in the tropics, the lack of biodiversity at higher temperatures is not great news,” paper co-leader Adam Woodhouse said in the release.

Next, the team plans to apply similar research methods to other marine plankton groups.

Read More: Global study, UVic researcher analyze how mammals responded during pandemic

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Trending