Connect with us

Science

Harvard Professor Believes Alien Junk Visited Our Solar System In 2017 – LADbible

Published

 on


A Harvard professor believes alien garbage visited our solar system back in 2017, and that more is on its way – saying it may have been some sort of ‘message in a bottle’.

Abraham ‘Avi‘ Loeb, who is the chair of Harvard’s Department of Astronomy, claims an object that recently wandered into our solar system wasn’t just another space rock, but in fact a form of alien technology.

The space object was dubbed Oumuamua, which translates roughly from Hawaiian as ‘scout’, having been spotted by Haleakalā Observatory in Hawaii.

It travelled towards our solar system in September 2017 from the direction of Vega, a nearby star 25 light years away.

Avi Loeb. Credit: Harvard University

In his forthcoming new book, Extraterrestrial: The First Sign of Intelligent Life Beyond Earth, Loeb explains how, on 9 September, its trajectory brought it closest to the sun, before blasting at about 58,900mph past Venus’ orbital distance at the end of the month, shooting past Earth’s on 7 October before ‘moving swiftly toward the constellation Pegasus and the blackness beyond’.

At first, scientists believed it was simply an ordinary comet, but Loeb soon considered whether or not it may have been discarded technology from an alien civilisation – looking at a number of unusual properties to come to the conclusion, including Oumuamua’s dimensions and the way it reflected sunlight.

The cigar-shaped object was at least five to 10 times longer than it was wide, something not seen with any naturally occurring space body experts have ever seen.

Loeb explains in his book: “This would make Oumuamua’s geometry more extreme by at least a few times in aspect ratio – or its width to its height – than the most extreme asteroids or comets that we have ever seen.”

It was also unusually bright, and was at least ‘ten times more reflective than typical solar system [stony] asteroids or comets’, with Loeb likening its surface to shiny metal.

Then there was also the way Oumuamua moved, Loeb explains.

“The excess push away from the sun – that was the thing that broke the camel’s back,” he says, adding that Oumuamua didn’t follow its calculated trajectory but actually accelerated ‘slightly, but to a highly statistically significant extent’ as it moved away from the sun.

published at2 months ago

Due to the anomalies, Loeb concluded that the chances of it being a random comet was around on in quadrillion, speculating that it could be ‘space junk’ that had once served as a space navigation buoy used by a civilisation long ago.

“The only way to look for [alien civilizations] is to look for their trash, like investigative journalists who look through celebrities’ trash,” Loeb says.

Credit: Extraterrestrial: The First Sign of Intelligent Life Beyond Earth
Credit: Extraterrestrial: The First Sign of Intelligent Life Beyond Earth

In an article for Scientific American, Loeb explains how his book details the ‘unusual properties’ of Oumuamua.

“It had a flattened shape with extreme proportionsnever seen before among comets or asteroids, as well as an unusual initial velocity and a shiny appearance,” Loeb said.

It also lacked a cometary tail, but nevertheless exhibited a push away from the sun in excess of the solar gravitational force.

As a regular comet, Oumuamua would have had to lose about a tenth of its mass in order to experience the excess push by the rocket effect. Instead, Oumuamua showed no carbon-based molecules along its trail, nor jitter or change in its spin period – as expected from cometary jets.

The excess force could be explained if Oumuamua was pushed by the pressure of sunlight; that is, if it is an artificially-made lightsaila thin relic of the promising technology for space exploration that was proposed as early as 1924 by Friedrich Zander and is currently being developed by our civilisation.

This possibility would imply that Oumuamua could be a message in a bottle.

Featured Image Credit: ESO/M. Kornmesser

Let’s block ads! (Why?)



Source link

Continue Reading

Science

NASA Test of Mega Moon Rocket Engines Cut Short Unexpectedly – Gadgets 360

Published

 on


NASA’s deep space exploration rocket built by Boeing briefly ignited all four engines of its behemoth core stage for the first time on Saturday, cutting short a crucial test to advance a years-delayed US government programme to return humans to the moon in the next few years.

Mounted in a test facility at NASA’s Stennis Space Center in Mississippi, the Space Launch System’s (SLS) 212-foot tall core stage roared to life at 4:27pm local time (3:57am IST) for just over a minute — well short of the roughly four minutes engineers needed to stay on track for the rocket’s first launch in November this year.

“Today was a good day,” NASA administrator Jim Bridenstine said at a press conference after the test, adding “we got lots of data that we’re going to be able to sort through” to determine if a do-over is needed and whether a November 2021 debut launch date is still possible.

The engine test, the last leg of NASA’s nearly year-long “Green Run” test campaign, was a vital step for the space agency and its top SLS contractor Boeing before a debut unmanned launch later this year under NASA’s Artemis programme, the Trump administration’s push to return US astronauts to the moon by 2024.

It was unclear whether Boeing and NASA would have to repeat the test, a prospect that could push the debut launch into 2022. NASA’s SLS program manager John Honeycutt, cautioning the data review from the test is ongoing, told reporters the turnaround time for another hot fire test could be roughly one month.

To simulate internal conditions of a real liftoff, the rocket’s four Aerojet Rocketdyne RS-25 engines ignited for roughly one minute and 15 seconds, generating 1.6 million pounds of thrust and consuming 700,000 gallons of propellants on NASA’s largest test stand, a massive facility towering 35 stories tall.

The expendable super heavy-lift SLS is three years behind schedule and nearly $3 billion (roughly Rs. 22,000 crores) over budget. Critics have long argued for NASA to retire the rocket’s shuttle-era core technologies, which have launch costs of $1 billion (roughly Rs. 7,300 crores) or more per mission, in favor of newer commercial alternatives that promise lower costs.

By comparison, it costs as little as $90 million to fly the massive but less powerful Falcon Heavy rocket designed and manufactured by Elon Musk’s SpaceX, and some $350 million (roughly Rs. 2,600 crores) per launch for United Launch Alliance’s legacy Delta IV Heavy.

While newer, more reusable rockets from both companies – SpaceX’s Starship and United Launch Alliance’s Vulcan – promise heavier lift capacity than the Falcon Heavy or Delta IV Heavy potentially at lower cost, SLS backers argue it would take two or more launches on those rockets to launch what the SLS could carry in a single mission.

Reuters reported in October that President-elect Joe Biden’s space advisers aim to delay Trump’s 2024 goal, casting fresh doubts on the long-term fate of SLS just as SpaceX and Jeff Bezos’ Blue Origin scramble to bring rival new heavy-lift capacity to market.

NASA and Boeing engineers have stayed on a ten-month schedule for the Green Run “despite having significant adversity this year,” Boeing’s SLS manager John Shannon told reporters this week, citing five tropical storms and a hurricane that hit Stennis, as well as a three-month closure after some engineers tested positive for the coronavirus in March.

© Thomson Reuters 2020


Does WhatsApp’s new privacy policy spell the end for your privacy? We discussed this on Orbital, our weekly technology podcast, which you can subscribe to via Apple Podcasts, Google Podcasts, or RSS, download the episode, or just hit the play button below.

Let’s block ads! (Why?)



Source link

Continue Reading

Science

Mars Needs Minerals: Researchers Are Trying to Turn the Red Planet Green – IGN – IGN

Published

 on


It can take seven months – or more – to get to Mars. NASA can send supplies to the International Space Station if need be, but the same isn’t true of the distant planet. Instead, astronauts spending any time on Mars will have to rely on what’s known as in-situ resource utilization (ISRU) – using what’s around to replace objects brought from Earth. That includes food, which will eventually have to be grown there, to support any long-term residents. Instead of hauling bags of fertilizer in the spacecraft, researchers are trying to figure out how to make do with what’s on the ground, that is, Martian soil.

Thanks to NASA’s rovers and landers, scientists know about the pH and mineral makeup of the planet’s soil, which is known as regolith. Mars gets its red color from the oxidation of its rocks, regolith, and dust. Below the dust is the crust, which contains iron, magnesium, calcium, potassium, and more elements, according to NASA. But their presence isn’t enough to ensure plants can thrive there. The nutrients may not exist in a usable, or bioavailable, form. The levels of some may be toxic.

Cosmos: Possible Worlds Gallery

Some studies have shown it’s theoretically possible to grow plants in replicated Martian soil, but there aren’t big enough samples of actual Martian regolith to be certain. Since there’s no way to do farming trials on Mars itself, scientists try to replicate conditions on Earth. Researchers at the Florida Institute of Technology recently tried to grow Arabidopsis thaliana, a weed, and Lactuca sativa, lettuce, in a trio of Martian Regolith Simulants. These simulants are mixtures of artificial and natural materials that mimic the basalt-like Martian surface. The scientists found that neither plant in the synthetic soil without the addition of supplemental nutrients.

“These findings underscore that ISRU food solutions are likely at a lower technological readiness level than previously thought,” the researchers wrote in the study, which will be published in Icarus. For example, it’s a mistake to assume the regolith is uniform over the entire planet. “Our strategy was, rather than saying this simulant grows plants so that means we can grow plants everywhere on Mars, we need to say that Mars is a diverse planet,” ocean engineering and marine sciences associate professor Andrew Palmer told Florida Tech News.

In another new study, also published in Icarus, researchers break down the preparation of five new types of Mars simulants. Laura Fackrell, a doctoral candidate at the University of Georgia in Athens, and her colleagues created the mixtures specifically formulated with characteristics of Martian regolith that might make it difficult to grow plants. TThe soil might have high salinity or a low level of organic matter. Such conditions might require future Mars residents to add other minerals and components to their gardens before planting. “Specific types of bacteria and fungi are known to be beneficial for plants and may be able to support them under stress conditions like we see on Mars,” Fackrell told TNW.

To test the mock Mars dirt, Fackrell tried growing several plants, including a moth bean. They hold up better with less water than other options she tried, “But they’re not necessarily super healthy,” Fackrell told Science News.

It will be years before humans reach Mars, but in the meantime, research into growing plants in difficult environments could translate to Earth, where temperatures are rising. Fackrell studied microbes that live in hot springs. “Anything we learn about farming on Mars could help with farming in challenging environments on Earth that help us build to a sustainable future,” she told Florida Tech News.

For more Mars news, read about how there was once a salty lake on the red planet, and how a study revealed lakes beneath the surface of Mars.

Let’s block ads! (Why?)



Source link

Continue Reading

Science

Open Windows May Reduce COVID-19 Risk In Cars: Study – Jalopnik

Published

 on


Illustration for article titled Open Windows May Reduce COVID-19 Risk In Cars: Study

Photo: Dan Kitwood (Getty Images)

COVID-19 has completely changed the face of travel as we know it, with massively reduced numbers of people taking flights and public transportation—but our cars have remained a mystery. How safe are we in our vehicles? What are our risks?

A study published by Science Advances in early January has begun to answer some of our most pressing questions about COVID-19 transmission in our vehicles. Four scientists from the University of Massachusetts, Amherst and Brown University used computational fluid dynamics to evaluate the risks posed by the virus within a vehicle’s cabin and have also suggested ways to mitigate risk.

If you’re familiar with the design process of a race car or airplane, then you’ve likely encountered computational fluid dynamics before. Essentially, these computer simulations model how gases and liquids move over and through different surfaces. In this particular case, our scientists used CFD to model the way air moves inside a car.

Advertisement

The simulated vehicle used in the study was loosely based on a Toyota Prius traveling at 50 mph carrying two passengers: a driver in the front left of the car and a passenger in the back right. Interestingly, the air flow outside the moving car creates a pressure gradient inside the car that causes air to circulate from the back of the car to the front. Then, they started modeling the interior air flow with different combinations of the windows being open or closed. It’s important to note here that, no matter the combination, the air conditioning was on.

Illustration for article titled Open Windows May Reduce COVID-19 Risk In Cars: Study

Image: Science Advances

The results probably aren’t going to be surprising. When all four windows were closed, the car was at its most poorly ventilated, so eight to 10 percent of aerosols—on which COVID-19 travels—exhaled by one person in the car traveled to the other. When all the windows were open, the car was at its best ventilated, with just 0.2 to two percent of aerosols swapping between passengers.

Of course, wide open windows aren’t always practical when you’re driving. Up north, you’ll freeze in the winter. Down south, someone with a delicate constitution will melt in the summer. A heavy rain will make things twice as miserable. So, having both the driver and the passenger roll down their windows was found to be better than keeping everything shut tight. That diagonal configuration allows air to flow in and then right back out. It might not be comfortable, but it could save lives.

Advertisement

A later study that hasn’t yet been published found that cracking windows halfway was also a good idea, but only rolling them a quarter of the way down was significantly more dangerous, the New York Times reports. For larger vehicles like minivans or for vehicles transporting more people, the recommendation is to keep everything open.

Opening windows has been recommended since the onset of the virus. The increased ventilation allows virus particles to be whisked away rather than recirculated. And we also know that the smaller the space we share, the more likely we are to swap aerosol particles. This study basically just used science to give us the ideal strategy for, say, rideshares or short jaunts outside your bubble.

Advertisement

Of course, there are still dangers, even when opening your windows. In fact, driving with your windows open increases in-car air pollution by 80 percent, which thus increases your likelihood of dying as a result of air pollution.

The very best option is, of course, to stay home unless absolutely necessary and, when traveling, to do so in off-peak hours.

Let’s block ads! (Why?)



Source link

Continue Reading

Trending