adplus-dvertising
Connect with us

Science

How the Webb telescope will show us planets like never before – Inverse

Published

 on


When the James Webb Space Telescope (JWST) begins operations over the summer, it will be training the largest, most powerful set of mirrors and instruments ever launched into space on some of the most distant and fascinating targets in the cosmo: The very first stars and galaxies to form in our universe, of course, but also exoplanets.

JWST is not really an exoplanet hunter, but with its 6.5-meter diameter primary mirror and infrared spectroscopy instruments, it’s perfectly suited to peer more closely at these distant worlds than ever before. Telling us what they are made of and, potentially, if there are signs of life in their atmospheres.

Cornell astrophysicist Nikole Lewis says she plans to devote some of her JWST observing time to a “deep field” exploration WASP-17b. It’s a “hot Jupiter” exoplanet about 1,000 light years from Earth. The telescope will spend “80 hours looking at a single planet in all directions using a broad range of instruments, which will allow us to start to understand what the different parts of the planet look like,” Lewis tells Inverse. Combining measurements of temperature, cloud structure, and atmospheric chemistry, “we’re going to really be able to paint a 3-D picture of what this particular hot Jupiter WASP-17b looks like,” she says.

An artist’s conception of “hot Jupiter” exoplanets WASP-12b, WASP-6b, WASP-31b, WASP-39b, HD 189733b, HAT-P-12b, WASP-17b, WASP-19b, HAT-P-1b and HD 209458b.NASA

And what will such an exoplanet look like? Paradoxically, it will look like not much at all and like nothing we’ve seen before. It’s a bit complicated, but the results may yet reframe our understanding of our place in the universe.

What will exoplanets look like to JWST?

“Full disclosure,” Lewis says, “we’re not going to get pretty pictures of exoplanets.” JWST is big and powerful and will see billions of years into the past, but resolving a distant exoplanet next to its star so that it looks like a Hubble or Voyager image of a planet in our Solar System is still far beyond its powers.

We’ll see exoplanets directly, Lewis says, the larger ones anyway, but they’ll appear as “just one bright dot.”

Don’t get disappointed. That dot is just the beginning. JWST will help build a more complex picture of distant exoplanets over time by mapping them in more detail than ever before and looking at neglected wavelengths.

“When we look at planets, we think of them as they look like in optical because of the light reflected off of them,” Lewis says. “But if you really want to tease into what makes them tick, you want to look at them in the infrared,” like if you want to know if there are organic compounds in their atmospheres.

The venerable Hubble Space Telescope has done amazing astronomy, but it sees primarily in the optical, UV, and near-infrared wavelengths. The now-retired Spitzer Space Telescope was tuned to the infrared, but it was retired in 2020, and while Lewis points out it conducted great exoplanet astronomy, it was never designed for such a mission.

There are also ground-based telescopes that can see in the infrared, but certain wavelengths are inaccessible to them due to the filtering effects of Earth’s atmosphere. All together, that means “We were able to find chemical fingerprints in the atmosphere,” of exoplanets, Lewis says, “But in almost all cases, we treat the atmosphere as being uniform, homogenous, we treat it as a one-dimensional object basically.”

Based in space and optimized for a wide swath of the infrared spectrum, Webb will provide data scientists can use to create truly multi-dimensional models of exoplanets. To understand how their atmospheres are structured and what makes up their composition.

“We’re going to be able to look at signatures from things like carbon dioxide, carbon monoxide, methane, all sorts of fun species,” Lewis says. “We can start to move away from that one-dimensional view of the planet and start to understand what it looks like in two in three dimensions.”

What will our Solar System look like to JWST?

While Webb’s capacity to study the most extremely distant objects in the universe rightfully garners a lot of attention and excitement, the space telescope will spend a lot of time peering deeply at objects closer to home as well.

Heidi Hammel, an interdisciplinary scientist involved with Webb since the early 2000s, will be using her observing time to look at just about everything visible in our Solar System outside the orbit of the Moon, from Mars, to asteroids, the outer planets, and even the strange frigid worlds of the Kuiper belt.

She may be most excited about viewing Uranus. The ringed and tilted ice giant planet has only been visited once by Voyager 2 in 1986, and it just so happens it orbits at just the right distance for an optimal field of view for Webb. We really will get some great photos of Uranus with Webb, though, of course, they’ll be in infrared.

In explaining what Uranus will look like through Webb, she refers to a collection of images of the gas giant taken by Hubble, the Keck Observatory, and the European Very Large Telescope (VLT). The blue and pinkish cloud tops are visible in the optical and near-infrared images taken by Hubble and Keck, but the mid-infrared images taken by the VLT appear like somewhat blurry, blunted Eyes of Sauron, or a lump of hot coal in the back of a furnace.

Views of Uranus
Views of Uranus in multiple wavelengths. NASA

“Webb will have better image quality,” Hammel says. “We’ll be able to tighten up these images, and then they won’t look so mottled.”

Webb will allow Hammel and other planetary scientists to better understand how Uranus’s upper and lower atmospheres interact. Webb’s spectrometer will enable them to map the planet’s chemical composition like never before.

“Where is methane coming from? Where is ethane coming from?” Hammel says. “We’re going to be able to tease out this chemistry as a function of altitude, and figure out the linkages.

Why it matters— It’s not a coincidence that scientists looking at distant exoplanets and planets in our backyard are all interested in the spectra and chemical composition of their targets. Such observations don’t always provide immediately stunning visual images you can slap on a poster as you can with many Hubble images, but over time they can help scientists paint a broader, deeper conceptual picture of how all planets and solar systems work, including our own.

Scientists spend a lot of time trying to answer questions about how we got here, Lewis says.

How did our solar system form? How did Earth turn out to be the only habitable planet in the Solar System?

“But we’ve always had just a sample of eight things to compare to, right? And now we’re going to have a sample of 300 to 400 things,” she says. “That allows us to test our models of the physics and chemistry of what makes planets tick.”

Adblock test (Why?)

728x90x4

Source link

Continue Reading

News

Here’s how Helene and other storms dumped a whopping 40 trillion gallons of rain on the South

Published

 on

 

More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.

That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.

“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”

The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.

Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.

Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.

Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.

Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.

Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.

“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”

The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.

North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.

Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”

Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.

Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.

For Dello, the “fingerprints of climate change” were clear.

“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”

___

Follow AP’s climate coverage at https://apnews.com/hub/climate

___

Follow Seth Borenstein on Twitter at @borenbears

___

Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.

Source link

Continue Reading

Science

‘Big Sam’: Paleontologists unearth giant skull of Pachyrhinosaurus in Alberta

Published

 on

 

It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.

On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.

They call it “Big Sam.”

The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.

It didn’t die alone.

“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.

She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”

“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.

The head alone, she said, is about the size of a baby elephant.

The discovery was a long time coming.

The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.

“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.

When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”

“It contains about 100 to 300 bones per square metre,” she said.

Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.

About a year ago, they found the second adult: Big Sam.

Bamforth said both dinosaurs are believed to have been the elders in the herd.

“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.

“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”

The genders of the two adults are unknown.

Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.

The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.

She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.

“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.

“It’s pretty exciting.”

This report by The Canadian Press was first published Sept. 25, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending