Connect with us

Science

Humans are a bigger source of climate-altering methane, new studies suggest – Science Magazine

Published

 on



<!–

–>

New research suggests ancient methane—like that trapped in an Alaskan lake—won’t flood the atmosphere as the climate warms in the coming decades.

Mark Thiessen/National Geographic

When it comes to forecasting global warming, methane is an unpredictable, menacing figure. The greenhouse gas is 28 times more powerful at trapping heat than carbon dioxide over a 100-year span. And as the planet warms, scientists fear vast stores of the gas will be released from Arctic permafrost and the deep ocean, warming the planet even further.

Evidence from two new studies offers hope: First, a swift release of massive quantities of ancient methane is unlikely. Second, humans seem to be a bigger source of modern methane emissions than previously thought—meaning people have more control over how much winds up in the atmosphere. “It’s generally encouraging news,” says Michael Dyonisius, a geochemist and graduate student at the University of Rochester (U of R) who led the study of ancient methane.

Methane comes from two main sources: biological and geological. Biological methane can be released from rotting plants and burping cows, whereas geological sources include natural seeps from fossil fuels and leaks from natural gas and coal mining operations. The methane molecules in older fossil fuel sources contain almost no carbon-14, a radioactive isotope of carbon created by cosmic ray bombardment.

To find out whether a spike in old methane could have triggered ancient bouts of warming, the researchers looked to ice sheets in Antarctica that trapped air bubbles, including small amounts of methane, over tens of thousands of years. Getting the samples took a lot of ice: Dyonisius and his colleagues drilled 11 tons from Antarctica’s Taylor Glacier. They melted the ice cores, siphoned off the gas, and measured levels of carbon-14 methane at intervals from 15,000 to 8000 years ago, an era when Earth switched from an ice age to a climate up to 0.5°C warmer than today.

That warming didn’t coincide with a big jump in carbon-14-depleted methane, the researchers report today in Science. That suggests the warmer temperatures didn’t trigger a big release of methane from permafrost or the ocean. “That’s one climate catastrophe we can check off,” Dyonisius says of the ocean scenario.

In a second study, the same team harvested ice from Greenland to estimate how much modern atmospheric methane comes from leaks in extraction operations and pipelines, versus natural geologic seeps from the earth. Because both types lack carbon-14, the scientists compared levels of carbon-14-depleted methane from the 1870s with levels from when the fossil fuel era was in full swing—in the decades leading up to the 1940s. (Later years were avoided because they are skewed by nuclear weapons testing, which boosts carbon-14 levels.)

The data reveal that levels of carbon-14–depleted methane were much lower in the 1870s. That means modern geologic sources of methane are much smaller than previously estimated, and that the big jump came from humans, they report this week in Nature. They estimate annual geologic methane emissions at about 1.6 million tons, dramatically lower than recent estimates of between 30 million and 60 million tons per year. (Methane released from all sources totals approximately 570 million tons a year.)

The new findings are meeting some resistance. Giuseppe Etiope, a geochemist whose calculations are challenged in the new paper, questions how the geologic emissions could be so low. One recent study, for instance, suggests that 3 million tons of methane rise every year from one part of the Arctic Ocean alone. “This a scientific conundrum,” says Etiope, of Italy’s National Institute of Geophysics and Volcanology. “If they are right, many other people are wrong.”

Katey Walter Anthony, an aquatic ecologist at the University of Alaska, Fairbanks, who studies methane from lakes created by melting permafrost, has questions about the Greenland study, but she also hasn’t found flaws in the U of R team’s method. “What I think needs to happen is we all need to get together and be very vulnerable and say, ‘Where could I be going wrong?’” she says.

The study of ancient methane emissions, on the other hand, is consistent with her research, which shows that permafrost lakes didn’t release vast quantities of methane as the planet left its last ice age. The danger now, she says, is that temperatures by the end of this century could rise several degrees higher than during that previous warming event. If that unleashes still more carbon trapped in permafrost, some of it might be converted into greenhouse gases including carbon dioxide or methane. “The carbon has to go somewhere,” she says.

Let’s block ads! (Why?)



Source link

Continue Reading

Science

Move over, Stegosaurus, there’s a new armored dino in town – Popular Science

Published

 on


Paleontologists in southern Argentina have recently discovered an adorable, five-foot-long armored dinosaur. The Jakapil kaniukura roamed the Earth during the hot and humid Cretaceous period roughly between 145.5 and 65.5 million years ago, and weighed 9 to 15 pounds–the size of the average domestic cat. 

The tiny dino’s fossilized remains were dug up during multiple digs over the over the past 10 years near a dam in Patagonia’s Río Negro province. The province is home to the La Buitrera palaeontological zone, a region well-known for the discovery of three complete southern raptors (Unenlagia) skeletons, herbivorous terrestrial crocodiles, the oldest found chelid turtles, and more.

Jakapil is part of the Thyreophoran dinosaur group that lived from the Jurassic period to the early Cretaceous period whose name means “shield bearer.” This feisty-looking group includes the bony backed, spiky tailed Stegosaurus and the tank-like Ankylosaurus. Like its prickly cousins, Jakapil had built in physical defenses, with rows of bony oval-shaped armor along its neck, back, and down to its tail.

[Related: This fossilized butthole gives us a rare window into dinosaur sex.]

“It bears unusual anatomical features showing that several traits traditionally associated with the heavy Cretaceous thyreophorans did not occur universally,” wrote the study’s authors, Facundo J. Riguetti, Sebastián Apesteguía, and Xabier Pereda-Suberbiola. “Jakapil also shows that early thyreophorans had a much broader geographic distribution than previously thought.”

The team published their findings in the journal Scientific Reports on August 11th. They first discovered Jakapil’s partial skeleton alongside 15 tooth fragments, which revealed that jakapil’s teeth were leaf-shaped like a modern-day iguana’s. 

According to lead paleontologist Sebastián Apesteguía, Jakapil marks the first-of-its-kind discovery of an armored dinosaur from the Cretaceous in South America. It also resembles a more primitive form of thyreophoran dinosaur that lived in the area significantly earlier. 

“Thyreophorans originated about 200 million years ago and rapidly evolved into various species distributed throughout the world,” Riguetti, first author of the work and a Conicet doctoral fellow at the Center for Biomedical, Environmental and Diagnostic Studies at Maimónides University said in a release. “However,of these early thyreophorans, the lineage represented by ‘Jakapil’ was the only one that lasted until at least 100 million years ago.”

Adblock test (Why?)



Source link

Continue Reading

Science

Full moon may hinder most anticipated meteor shower of the year – DiscoverWestman.com

Published

 on


This weekend is the peak of Perseid’s meteor shower, one of the best-known and largest celestial events that can be seen from Earth.

Throughout the past couple of days, meteors have been visible to on-lookers and will get an even better view during the event’s peak on Friday night.

“Meteors are these tiny little pieces of space dust that crash into the earth and burn up, and when that happens we see them in the sky as a falling star or a shooting star,” says Scott Young, the Planetarium Astronomer at the Manitoba Museum. “The meteor is sort of the official name for those objects, and on any night you can probably see one or two of those if you’re lucky, but on certain nights of the year, the Earth goes through a big cloud of cosmic dust and when you get all that dust hitting the Earth all on the same night, you get lots of meteors. So we call that a meteor shower.”

Young also says that it won’t look as if thousands of stars are falling out of the sky, but rather it will be one star every minute instead of one a night.

“It always occurs every year around August 11-13, somewhere in that range because we’re going through the dust bunny left behind by a comet that crosses Earth’s orbit. Now, that doesn’t always mean that you will see all of those things hitting the Earth, and the timing might happen during the day for you. It might be cloudy, or like this year, close to the full moon. When the full moon is up, it makes it hard to see some of those fainter meteors that you would see.”

The best time to see any meteor shower is between midnight and dawn. According to Young, even with the bright light of the full moon on the same night as the peak time to see meteors, it is a strong enough shower that viewers will still be able to see shooting stars. 

“The official peak occurs after midnight, Friday night, so Saturday morning around 3:00 a.m. our time. But to be honest, it’s not a single-night event. It builds up over a previous couple of weeks and each night there’ll be more and more meteor showers until the peak and then after the peak, it fades away for a couple of weeks.”

The comet that causes the meteor shower is comet Swift–Tuttle, discovered by Lewis Swift and Horace Parnell Tuttle in 1862.

“Each meteor shower over the course of the year has its own source objects, most of them are comets and we know that when we get close to the comet’s orbit in our orbit, we’ll see this meteor shower. They’re actually named after the constellations in the sky where the meteors look like they’re coming from. When we’re looking at the sky, it seems that the meteors from the Perseid meteor shower will come from the constellation Perseus, which is rising in the northeastern part of the sky at this time of year. That doesn’t mean you have to know where Perseus is, the meteors can appear all over the sky.”

To get the best view of the meteor shower peak, Young suggests viewers go to a place where there are not a lot of lights and even “put your back towards any bright lights that are like the moon or city lights.” He also suggests putting the phone away, because the bright light will cause your eyes to need time to adjust to the dark sky and some of the dimmer shooting stars may be missed.

“This is one of those things where you have to unplug, disconnect and just lay out under the stars, relax and look up. it’s a great therapeutic way to connect with the sky.”

Normally on the peak day of the event, Young will go out with an all-sky camera and broadcast live on the Manitoba Museum’s Facebook and YouTube pages, but he says it always depends on the weather.

Adblock test (Why?)



Source link

Continue Reading

Science

Talk like you: Scientists discover why humans evolved to talk while other primates can’t – Euronews

Published

 on


Why did humans evolve to talk, while monkeys were left to hoot, squeak and grunt to communicate?

The question has long puzzled scientists, who blamed our closest primate cousins’ inability to reproduce human speech sounds on their vocal anatomy.

Until now, researchers could not quite underpin what happened exactly during our evolution to make us able to speak while apes and monkeys can’t, given our vocal structures look almost identical to other primates.

Now, a new study published on Thursday in the journal Science claims to have the answer – and it’s not what anyone expected.

Analysing the phonal apparatus – the larynx – of 43 species of primates, a team of researchers based mainly in Japan found that all non-human primates – from orangutans to chimpanzees – had an additional feature in their throat that humans do not have.

Ability to speak and develop languages

While both humans and non-human primates produce sounds by forcing air through their larynges, causing folds of tissue to vibrate, monkeys and apes have an additional feature, a thin flap of tissue known as vocal membranes, or vocal lips.

Compared to apes and monkeys, humans were found to lack this anatomical vocal membrane – a small muscle just above the vocal cords – as well as balloon-like laryngeal structures called air sacs which apes and monkeys use to produce the loud calls and screams we’re not quite capable of.

According to the researchers, humans have lost this extra vocal tissue over time, somehow simplifying and stabilising the sounds coming out of our throat, and allowing us, in time, to develop the ability to speak – and eventually develop very complex sophisticated languages.

Monkeys and apes, on the other hand, maintained these vocal lips which don’t really allow them to control the inflection and register of their voice and produce stable, clear vocal fold vibrations.

“Paradoxically, the increased complexity of human spoken language thus followed simplification of our laryngeal anatomy,” says the study.

Communication through sign language

It’s unclear when humans lost these extra tissues still present in apes and monkeys and became able to speak, as the soft tissues in the larynx are not preserved in fossils, and researchers could only study living species.

We know that it must have happened sometime after the Homo Sapiens lineage split from the other primates, some 6-7 million years ago.

The fact that apes and monkeys haven’t developed the ability to speak like humans doesn’t mean that they are not able to clearly communicate with each other.

Though their vocal anatomy doesn’t allow them to form vowel sounds and proper words, non-human primates have a complex communication system based primarily on body language rather than oral sounds.

But monkeys and apes have also proven to be able to communicate with humans.

In the not-often-happy history of the interaction between non-human primates and humans, researchers have been able to teach apes and monkeys to communicate with people.

Koko the gorilla, for example, became famous for being able to use over 1,000 hand signs in sign language, while the bonobo Kanzi was reportedly able to communicate using a keyboard.

But when it comes to having a chat, monkeys and humans might never be able to share one.

Adblock test (Why?)



Source link

Continue Reading

Trending