adplus-dvertising
Connect with us

Science

Interacting galaxies are more than they seem, JWST shows

Published

 on

Canada News Social Media

It was only two years ago that JWST’s first science images were released.

This view showcases the difference between the JWST’s NIRCam and MIRI views, with NIRCam’s being far sharper and revealing more objects. The MIRI view reveals dusty details that no other wavelength can, however, including the abundance and composition of dust inside, which relates to a galaxy’s star-forming and life-forming potentials. In the MIRI view, red = gas-rich; blue = gas-poor (but still present); green = organic molecules, especially polycyclic aromatic hydrocarbons.

Credit: NASA, ESA, CSA, and STScI

They combined high resolution with unprecedented sensitivity in infrared light.

Overlaid with (older) Hubble data, the JWST NIRCam image of the Southern Ring Nebula is clearly superior in a variety of ways: resolution, the details revealed, the extent of the outer gas, etc. It truly is a spectacular reveal of how stars like the Sun end their lives, as well as how, very slightly, the nebula has expanded in between the acquisition of the Hubble and JWST images.

Credit: NASA, ESA, CSA, and STScI

Many surprises abounded early on.

stephan's quintet miri JWST

This image is the first mid-infrared image of Stephan’s Quintet ever taken by the James Webb Space Telescope. The galaxy at the topmost-right of the image displays a brilliant spiky pattern: evidence of a supermassive black hole that had never been revealed prior.

Credit: NASA, ESA, CSA, STScI

New features within planetary systems were discovered.

Fomalhaut system JWST

This image of the dusty debris disk surrounding the young star Fomalhaut is from Webb’s Mid-Infrared Instrument (MIRI). It reveals three nested belts extending out to 14 billion miles (23 billion kilometers) from the star. The inner belts – which had never been seen before – were revealed by Webb for the first time. Labels at left indicate the individual features. At right, a great dust cloud is highlighted and pullouts show it in two infrared wavelengths: 23 and 25.5 microns.

Credit: NASA, ESA, CSA; Processing: A. Gáspár (University of Arizona) &Alyssa Pagan (STScI)

Distance records were shattered, both for individual galaxies,

JADES-GS-z14-0, in the top inset box, is found behind (and just to the right of) a closer, brighter, bluer galaxy. It was only through the power of spectroscopy with incredible resolution, capable of separating the two sources, that the nature of this record-breakingly distant object could be determined. Its light comes to us from when the Universe was only 290 million years old: just 2.1% of its current age.

Credit: S. Carniani et al. (JADES collaboration), arXiv:2405.18485, 2024

as well as the earliest galaxy clusters.

JWST most distant galaxy cluster

The galaxies that are members of the identified proto-cluster A2744z7p9OD are shown here, outlined atop their positions in the JWST view of galaxy cluster Abell 2744. At just 650 million years after the Big Bang, it’s the oldest proto-cluster of galaxies ever identified. This is early, but is consistent with simulations of when the earliest proto-clusters should emerge from the most initially overdense regions.

Credit: NASA, ESA, CSA, Takahiro Morishita (IPAC); Processing: Alyssa Pagan (STScI)

But spectacular features also emerged within interacting galaxies.

JWST background galaxies Stephan's Quintet

The stellar streams being ripped from one of the interacting member galaxies of Stephan’s Quintet glitters in this image, while background galaxies shine from much farther away. The new stars that form may not remain gravitationally bound and undisturbed for long, but for as long as they persist, will form collections of stars (or galaxies) that have no dark matter within them at all.

Credit: NASA, ESA, CSA, and STScI

With near-infrared NIRCam and mid-infrared MIRI views, optically invisible features shone brilliantly.

The pair of interacting galaxies in the process of a merger, known as IC 1623, is imaged here by JWST. Data from a trio of JWST’s instruments, MIRI, NIRSpec, and NIRCam, were used in the construction of this image. The ongoing starburst at the center produces intense infrared emissions.

Credit: ESA/Webb, NASA & CSA, L. Armus & A. Evans; Acknowledgement: R. Colombari

Previously, the galactic pair Arp 142 — the Penguin and the Egg — was viewed by Hubble.

This interacting pair of galaxies, cataloged as Arp 142, was dubbed “the Penguin and the Egg” after the Hubble Space Telescope revealed this view of the two member galaxies: the extended NGC 2936 and the compact NGC 2937.

Credit: NASA, ESA and the Hubble Heritage Team (STScI/AURA)

To celebrate its second anniversary, JWST released a NIRCam image,

This NIRCam view of the Penguin and the Egg displays a smoke-like appearance, while the “eye” of the Penguin shines brilliantly: corresponding to the center of what was, up until perhaps 75 million years ago, just a normal-appearing spiral galaxy. The gravitational encounter with the “Egg” galaxy has distorted and distended the less massive spiral galaxy into the shape now seen here.

Credit: NASA, ESA, CSA, STScI

a MIRI image,

In mid-infrared light, the Penguin looks more like a seahorse, with cool dust dominating the galaxy’s appearance, while the Egg appears smaller and more compact: illuminated largely by the cooler, older stars present within it. At much longer wavelengths than the NIRCam image, MIRI’s resolution is much lower, but still reveals spectacularly sharp features.

Credit: NASA, ESA, CSA, STScI

and also a composite image of this galactic encounter, occurring 326 million light-years away.

In this composite image, NIRCam and MIRI data are combined together to produce this image, which is more detail-rich than either the NIRCam or MIRI images on their own. While both MIRI and NIRCam features are clearly present throughout the Penguin, only the central core of the Egg has a MIRI contribution.

Credit: NASA, ESA, CSA, STScI

The larger galaxy, the Penguin, exhibits severely extended features: knotted gas, which triggers new star-forming episodes.

This three-panel animation shows Hubble (visible light), NIRCam (near-infrared light), and NIRCam+MIRI composite (all JWST light) images superimposed atop one another, highlighting the various features present within the Penguin component of Arp 142.

Credits: NASA, ESA and the Hubble Heritage Team (STScI/AURA); NASA, ESA, CSA, STScI; Processing: E. Siegel

The Egg, meanwhile, is relatively undisturbed: a more massive, compact elliptical galaxy, with very little gas remaining.

This three-panel animation shows Hubble (visible light), NIRCam (near-infrared light), and NIRCam+MIRI composite (all JWST light) images superimposed atop one another, highlighting the various features present within the Egg component of Arp 142. Note how only background galaxies and the absolute center of the Egg are impacted by MIRI’s imagery.

Credits: NASA, ESA and the Hubble Heritage Team (STScI/AURA); NASA, ESA, CSA, STScI; Processing: E. Siegel

Nearby, the edge-on galaxy PGC 1237172 lies 100 million light-years closer: dust-poor and nearly invisible to MIRI.

This three-panel animation shows Hubble (visible light), NIRCam (near-infrared light), and NIRCam+MIRI composite (all JWST light) images superimposed atop one another, highlighting the various features present within the edge-on galaxy PGC 1237172. The galaxy itself is nearly invisible to MIRI’s eyes.

Credits: NASA, ESA and the Hubble Heritage Team (STScI/AURA); NASA, ESA, CSA, STScI; Processing: E. Siegel

The Penguin, once a spiral, stretches out into a seahorse-like appearance in infrared light.

These three views show the visible light (left), near-infrared (middle), and mid-infrared (right) views of the Penguin galaxy that’s part of Arp 142. The galaxy takes on a seahorse-like appearance in mid-infrared light, as polycyclic aromatic hydrocarbons, old, cool stars, and cold dust are highlighted.

Credits: NASA, ESA and the Hubble Heritage Team (STScI/AURA); NASA, ESA, CSA, STScI; Composition: E. Siegel

The smoke-like appearance reveals polycyclic aromatic hydrocarbons: complex organic molecules that may be life’s precursors.

This annotated composite view from JWST shows both NIRCam and MIRI data together, highlighting the longer-wavelength features in redder colors and the shorter-wavelength ones in bluer colors. The Penguin, in particular, exhibits a great diversity of gaseous and stellar features, showcasing just how severely it is being disrupted by this gravitational encounter.

Credit: NASA, ESA, CSA, STScI

Eventually, and ironically, the Egg will subsume the Penguin.

[embedded content]

Mostly Mute Monday tells an astronomical story in images, visuals, and no more than 200 words.

 

728x90x4

Source link

Continue Reading

Science

Asteroid Apophis will visit Earth in 2029, and this European satellite will be along for the ride

Published

 on

Asteroid Apophis

The European Space Agency is fast-tracking a new mission called Ramses, which will fly to near-Earth asteroid 99942 Apophis and join the space rock in 2029 when it comes very close to our planet — closer even than the region where geosynchronous satellites sit.

Ramses is short for Rapid Apophis Mission for Space Safety and, as its name suggests, is the next phase in humanity’s efforts to learn more about near-Earth asteroids (NEOs) and how we might deflect them should one ever be discovered on a collision course with planet Earth.

In order to launch in time to rendezvous with Apophis in February 2029, scientists at the European Space Agency have been given permission to start planning Ramses even before the multinational space agency officially adopts the mission. The sanctioning and appropriation of funding for the Ramses mission will hopefully take place at ESA’s Ministerial Council meeting (involving representatives from each of ESA’s member states) in November of 2025. To arrive at Apophis in February 2029, launch would have to take place in April 2028, the agency says.

This is a big deal because large asteroids don’t come this close to Earth very often. It is thus scientifically precious that, on April 13, 2029, Apophis will pass within 19,794 miles (31,860 kilometers) of Earth. For comparison, geosynchronous orbit is 22,236 miles (35,786 km) above Earth’s surface. Such close fly-bys by asteroids hundreds of meters across (Apophis is about 1,230 feet, or 375 meters, across) only occur on average once every 5,000 to 10,000 years. Miss this one, and we’ve got a long time to wait for the next.

When Apophis was discovered in 2004, it was for a short time the most dangerous asteroid known, being classified as having the potential to impact with Earth possibly in 2029, 2036, or 2068. Should an asteroid of its size strike Earth, it could gouge out a crater several kilometers across and devastate a country with shock waves, flash heating and earth tremors. If it crashed down in the ocean, it could send a towering tsunami to devastate coastlines in multiple countries.

Over time, as our knowledge of Apophis’ orbit became more refined, however, the risk of impact  greatly went down. Radar observations of the asteroid in March of 2021 reduced the uncertainty in Apophis’ orbit from hundreds of kilometers to just a few kilometers, finally removing any lingering worries about an impact — at least for the next 100 years. (Beyond 100 years, asteroid orbits can become too unpredictable to plot with any accuracy, but there’s currently no suggestion that an impact will occur after 100 years.) So, Earth is expected to be perfectly safe in 2029 when Apophis comes through. Still, scientists want to see how Apophis responds by coming so close to Earth and entering our planet’s gravitational field.

“There is still so much we have yet to learn about asteroids but, until now, we have had to travel deep into the solar system to study them and perform experiments ourselves to interact with their surface,” said Patrick Michel, who is the Director of Research at CNRS at Observatoire de la Côte d’Azur in Nice, France, in a statement. “Nature is bringing one to us and conducting the experiment itself. All we need to do is watch as Apophis is stretched and squeezed by strong tidal forces that may trigger landslides and other disturbances and reveal new material from beneath the surface.”

The Goldstone radar’s imagery of asteroid 99942 Apophis as it made its closest approach to Earth, in March 2021. (Image credit: NASA/JPL–Caltech/NSF/AUI/GBO)

By arriving at Apophis before the asteroid’s close encounter with Earth, and sticking with it throughout the flyby and beyond, Ramses will be in prime position to conduct before-and-after surveys to see how Apophis reacts to Earth. By looking for disturbances Earth’s gravitational tidal forces trigger on the asteroid’s surface, Ramses will be able to learn about Apophis’ internal structure, density, porosity and composition, all of which are characteristics that we would need to first understand before considering how best to deflect a similar asteroid were one ever found to be on a collision course with our world.

Besides assisting in protecting Earth, learning about Apophis will give scientists further insights into how similar asteroids formed in the early solar system, and, in the process, how  planets (including Earth) formed out of the same material.

One way we already know Earth will affect Apophis is by changing its orbit. Currently, Apophis is categorized as an Aten-type asteroid, which is what we call the class of near-Earth objects that have a shorter orbit around the sun than Earth does. Apophis currently gets as far as 0.92 astronomical units (137.6 million km, or 85.5 million miles) from the sun. However, our planet will give Apophis a gravitational nudge that will enlarge its orbit to 1.1 astronomical units (164.6 million km, or 102 million miles), such that its orbital period becomes longer than Earth’s.

It will then be classed as an Apollo-type asteroid.

Ramses won’t be alone in tracking Apophis. NASA has repurposed their OSIRIS-REx mission, which returned a sample from another near-Earth asteroid, 101955 Bennu, in 2023. However, the spacecraft, renamed OSIRIS-APEX (Apophis Explorer), won’t arrive at the asteroid until April 23, 2029, ten days after the close encounter with Earth. OSIRIS-APEX will initially perform a flyby of Apophis at a distance of about 2,500 miles (4,000 km) from the object, then return in June that year to settle into orbit around Apophis for an 18-month mission.

Related Stories:

Furthermore, the European Space Agency still plans on launching its Hera spacecraft in October 2024 to follow-up on the DART mission to the double asteroid Didymos and Dimorphos. DART impacted the latter in a test of kinetic impactor capabilities for potentially changing a hazardous asteroid’s orbit around our planet. Hera will survey the binary asteroid system and observe the crater made by DART’s sacrifice to gain a better understanding of Dimorphos’ structure and composition post-impact, so that we can place the results in context.

The more near-Earth asteroids like Dimorphos and Apophis that we study, the greater that context becomes. Perhaps, one day, the understanding that we have gained from these missions will indeed save our planet.

 

728x90x4

Source link

Continue Reading

Science

McMaster Astronomy grad student takes a star turn in Killarney Provincial Park

Published

 on

Art News Canada

Astronomy PhD candidate Veronika Dornan served as the astronomer in residence at Killarney Provincial Park. She’ll be back again in October when the nights are longer (and bug free). Dornan has delivered dozens of talks and shows at the W.J. McCallion Planetarium and in the community. (Photos by Veronika Dornan)

Veronika Dornan followed up the April 8 total solar eclipse with another awe-inspiring celestial moment.

This time, the astronomy PhD candidate wasn’t cheering alongside thousands of people at McMaster — she was alone with a telescope in the heart of Killarney Provincial Park just before midnight.

Dornan had the park’s telescope pointed at one of the hundreds of globular star clusters that make up the Milky Way. She was seeing light from thousands of stars that had travelled more than 10,000 years to reach the Earth.

This time there was no cheering: All she could say was a quiet “wow”.

Dornan drove five hours north to spend a week at Killarney Park as the astronomer in residence. part of an outreach program run by the park in collaboration with the Allan I. Carswell Observatory at York University.

Dornan applied because the program combines her two favourite things — astronomy and the great outdoors. While she’s a lifelong camper, hiker and canoeist, it was her first trip to Killarney.

Bruce Waters, who’s taught astronomy to the public since 1981 and co-founded Stars over Killarney, warned Dornan that once she went to the park, she wouldn’t want to go anywhere else.

The park lived up to the hype. Everywhere she looked was like a painting, something “a certain Group of Seven had already thought many times over.”

The dome telescopes at Killarney Provincial Park.

She spent her days hiking the Granite Ridge, Crack and Chikanishing trails and kayaking on George Lake.  At night, she went stargazing with campers — or at least tried to. The weather didn’t cooperate most evenings — instead of looking through the park’s two domed telescopes, Dornan improvised and gave talks in the amphitheatre beneath cloudy skies.

Dornan has delivered dozens of talks over the years in McMaster’s W.J. McCallion Planetarium and out in the community, but “it’s a bit more complicated when you’re talking about the stars while at the same time fighting for your life against swarms of bugs.”

When the campers called it a night and the clouds parted, Dornan spent hours observing the stars. “I seriously messed up my sleep schedule.”

She also gave astrophotography a try during her residency, capturing images of the Ring Nebula and the Great Hercules Cluster.

A star cluster image by Veronika Dornan

“People assume astronomers take their own photos. I needed quite a lot of guidance for how to take the images. It took a while to fiddle with the image properties, but I got my images.”

Dornan’s been invited back for another week-long residency in bug-free October, when longer nights offer more opportunities to explore and photograph the final frontier.

She’s aiming to defend her PhD thesis early next summer, then build a career that continues to combine research and outreach.

“Research leads to new discoveries which gives you exciting things to talk about. And if you’re not connecting with the public then what’s the point of doing research?”

 

728x90x4

Source link

Continue Reading

Science

Where in Vancouver to see the ‘best meteor shower of the year’

Published

 on

Eyes to the skies, Vancouver, because between now and September 1st, stargazers can witness the ‘best meteor shower of the year’ according to NASA.

Known for its “long wakes of light and colour,” the Perseid Meteor Shower will peak on August 12th, 2024 – so consider this list a great place to start if you’re in search of a prime stargazing spots!

Grab your lawn chairs and blankets, and seek as little light pollution as possible. Here are some ideal stargazing spots to check out in and around Vancouver this summer.

Recent Posts:
This island with clear waters has one of the prettiest towns in BC
10 beautiful lake towns to visit in BC this summer

Wreck Beach

If you’re willing to brave the stairs and the regulars, it doesn’t get much better than Wreck Beach for watching the skies – for both sunsets and stargazing. The west-facing views practically eliminate immediate distractions from the city lights.

Spanish Banks Park

Spanish Banks is the perfect mixture of convenience and quality. Its location offers unobstructed views of the skies above, and it’s far enough away from downtown to mitigate some of the light pollution.

Burnaby Mountain Park

If it’s good enough for a university observatory, it’s good enough for us. Pretty much anywhere on Burnaby Mountain will offer tremendous viewpoints, but the higher you get the better (safely).

Porteau Cove

A short drive from Vancouver gets you incredible views of the Howe Sound from directly on the water. And naturally, its distance from any nearby community makes it a prime spot for stargazing.

Cypress Mountain

In addition to having one of the best viewpoints in Vancouver period, Cypress Mountain (and the road up to it) is also a great place to watch the sky. For a double-whammy, we say that you come around sunset, then hang out while the sky gets dark. Sure, it might take a few hours, but the view is worth it.

So there you have it, stargazers! Get ready to witness a dazzling show this summer.

 

728x90x4

Source link

Continue Reading

Trending