Connect with us


Kaboom! The Biggest Space Bloopers of 2019 –



Spaceflight is hard, and sometimes things don’t go to plan. But by looking at past missions and learning from their mistakes, we can make future missions all the better. The year 2019 had a few major “lessons learned” for entities all around the world. 

From difficulties landing on the moon, to a few rocket explosions, engineers definitely had some new things to think about for the next time.  

Related: The Greatest Spaceflight Moments of 2019

 Iran rocket failures  

Image 1 of 4

President Donald Trump used Twitter to release this image of Iran’s rocket failure at the Khomeini Space Center on Aug. 29, 2019. Trump released the image, apparently a U.S. reconnaissance satellite view, on Aug. 30. (Image credit: President Donald Trump via Twitter)
Image 2 of 4

This view of Iran's rocket failure at Site One of its Khomeini Space Center was captured on Aug. 29, 2019 by the commercial WorldView-2 satellite operated by Maxar Technologies.

This view of Iran’s rocket failure at Site One of its Khomeini Space Center was captured on Aug. 29, 2019 by the commercial WorldView-2 satellite operated by Maxar Technologies. (Image credit: Satellite image ©2019 Maxar Technologies)
Image 3 of 4

A wider view of Iran's rocket failure aftermath at the Khomeini Space Center on Aug. 29, 2019 as seen by the commercial WorldView-2 satellite operated by Maxar Technologies.

A wider view of Iran’s rocket failure aftermath at the Khomeini Space Center on Aug. 29, 2019 as seen by the commercial WorldView-2 satellite operated by Maxar Technologies. (Image credit: Satellite image ©2019 Maxar Technologies)
Image 4 of 4

One of Planet's SkySat Earth-observation satellites spotted the wreckage of a failed Iranian rocket launch on Aug. 29, 2019.

One of Planet’s SkySat Earth-observation satellites spotted the wreckage of a failed Iranian rocket launch on Aug. 29, 2019. (Image credit: Planet Labs, Inc.)

Iran experienced its fair share of rocket failures in 2019. In January, the third stage of a rocket called Simorgh did not reach its “necessary speed” to successfully heft the Payam satellite into its planned orbit, Telecommunications Minister Mohammad Javad Azari Jahromi told AP News

In February, satellite images from company DigitalGlobe showed an Iranian satellite called Doosti (“Friendship” in Persian) likely launched, but multiple sources suggested it did not make it safely to orbit. Then in August, more satellite imagery from Planet showed a rocket that had apparently exploded on the pad, in footage that was first shared exclusively with NPR. 

China rocket & satellite failure

This nation had an extraordinarily productive late 2019, when (among many other milestones) it successfully launched two rockets in three hours from different launch sites – and two rockets in six hours from the same launch area. But there were some mistakes along the way. 

Chinese private company OneSpace had a launch failure in March 2019 that was later attributed to a gyroscope issue. In May, a Long March 4C rocket from the Chinese government failed during launch, due to an issue with the rocket’s third stage. An August launch of a Long March 3B rocket appeared to go well at first, but then its main payload — the Chinasat 18 satellite — failed to communicate with Earth.

 Israel’s moon crash 

In April of this year, Israel aimed for the moon with a novel lander called Beresheet built by the private group SpaceIL. The probe, which launched Feb. 21 on a SpaceX Falcon 9 rocket, was poised to become the first privately built moon lander to softly set down on the lunar surface. But when it arrived at the moon on April 11, something went wrong. 

Instead of landing safely on the moon’s Sea of Serenity, Beresheet missed its landing burn and crashed into the lunar surface instead. Despite the failure, SpaceIL has vowed to build a new Beresheet and return to the moon in the mid-2020s. 

 SpaceX Crew Dragon abort explosion 

An engine test of SpaceX’s Crew Dragon, which will eventually bring astronauts to the International Space Station, did not go to plan on April 20. Local media reports and images showed a huge plume of smoke emanating from the test site

“Earlier today, SpaceX conducted a series of engine tests on a Crew Dragon test vehicle on our test stand at Landing Zone 1 in Cape Canaveral, Florida,” a company spokesperson told in a statement. “The initial tests completed successfully, but the final test resulted in an anomaly on the test stand.” A leaky valve and faulty component were later found to be the causes of the fire. 

SpaceX has since fixed the problem and performed a series of successful ground tests of Crew Dragon’s abort system. The company will launch an uncrewed In-Flight Abort test flight no earlier than Jan. 11, and aims to begin flying people to the space station in 2020. 

 Arianespace Vega failure 

French company Arianespace experienced a major anomaly in July when its Vega rocket, carrying the United Arab Emirates’ FalconEye1 satellite, failed to get the rocket or the satellite safely into space. In September, the European Space Agency said that the Z23 motor – which powers the second stage of the rocket – was the cause. 

“The commission identified the anomaly’s most likely cause as a thermo-structural failure in the forward dome area of the Z23 motor,” ESA wrote In a statement. Vega will most likely return to flight in 2020 once corrective action is taken to stop the failure from happening again, the agency added.

 India’s moon crash 

 On Sept. 6, the India Chandrayaan-2 moon lander Vikram made a descent to the moon  —  then stopped communicating with Earth. 

The Indian Space Research Organisation spent more than two months trying to find the little lander, before determining that it had indeed crashed on the surface. The suspected cause is an issue with the braking thrusters, which were supposed to slow down Vikram during its last few feet before soft-landing. Vikram instead “hard landed” within view of its landing site. 

 A stuck “mole” on Mars 

The InSight Mars lander experienced a number of issues trying to get its drill deep enough into the Martian surface to look at heat flow on the Red Planet. 

During several attempts, the “mole” got stuck because the regolith (soil) was harder than expected. At one point, the mole even popped out of the hole. Engineers eventually hit upon the idea of using a robotic arm to pin the drill against the soil during penetration. 

As of late December, the mole is moving under the surface again

 Exos Aerospace rocket crash 

 An Exos Aerospace suborbital sounding rocket (which flies into the upper atmosphere) failed during a launch attempt on Oct. 26. The Suborbital Autonomous Rocket with GuidancE (SARGE) rocket’s mission ended after the launch attempt at Spaceport America in New Mexico. 

The problem was later traced to the failure of a part underneath the nose cone; the nose cone fell back into the rocket and the rocket’s trajectory veered beyond recovery.

 SpaceX’s Starship prototype pops 

Starship Mk1 had an anomaly in November, blowing its top during a cryogenic pressure test at SpaceX’s facilities near the South Texas village of Boca Chica. 

SpaceX plans to move to more advanced prototypes of Starship rather than repairing and retesting this particular one, CEO Elon Musk said in a tweet. These prototypes are forming part of the testing program for Starship, which is expected to bring astronauts into deep space (including Mars) in the coming years.

SpaceX was already building a second Starship prototype, the Mk2, in Florida. After the Mk1 anomaly, the company decided to put its resources behind the construction of a third new prototype, the Mk3, at its Boca Chica test site. 

 Boeing Starliner in wrong orbit

Like SpaceX, Boeing has a NASA contract to fly eventually fly astronauts on trips to the International Space Station. To do that, Boeing has built a new space capsule, called the CST-100 Starliner, which is designed to launch into orbit on an Atlas V rocket, dock itself at the station and return to Earth to make a land-based landing with parachutes and airbags. 

On Dec. 20, Boeing launched the first Starliner test flight to the International Space Station, but the uncrewed mission never made it to its destination. A mission clock error caused the Starliner to think it was in a later part of its mission, leading the spacecraft to use propellant it vitally needed for the trip to the station. In the end, Starliner’s clock error and a communications issue forced Boeing to abandon hopes of reaching the space station. The planned eight-day mission was cut to just three, with Starliner returning to Earth and landing successfully

While Starliner successfully launched and landed, its failure to reach the space station has NASA and Boeing discussing whether another uncrewed test flight will be required before astronauts can start flying on the spacecraft in 2020.  

Follow Elizabeth Howell on Twitter @howellspace. Follow us on Twitter @Spacedotcom and on Facebook

All About Space Holiday 2019

Need more space? Subscribe to our sister title “All About Space” Magazine for the latest amazing news from the final frontier! (Image credit: All About Space)

Let’s block ads! (Why?)

Source link

Continue Reading


NASA’s Hubble Space Telescope captured two festive-looking nebulas – Tech Explorist



The image shows NGC 248, about 60 light-years long and 20 light-years wide. They are two nebulas, situated to appear as one. The nebulas, together, are called NGC 248.

Initially discovered in 1834 by the astronomer Sir John Herschel, NGC 248 resides in the Small Magellanic Cloud, located approximately 200,000 light-years away in the southern constellation Tucana.

Small Magellanic Cloud is a dwarf galaxy that is a satellite of our Milky Way galaxy. The image is part of a study called Small Magellanic Cloud Investigation of Dust and Gas Evolution (SMIDGE).

The dwarf satellite galaxy contains several brilliant hydrogen nebulas, including NGC 248. Intense radiation from the brilliant central stars is heating hydrogen in each nebula, causing them to glow red.

The study’s principal investigator, Dr. Karin Sandstrom of the University of California, San Diego, said“The Small Magellanic Cloud has between a fifth and a tenth of the amount of heavy elements that the Milky Way does. Because it is so close, astronomers can study its dust in great detail and learn about what dust was like earlier in the history of the universe.”

“It is important for understanding the history of our galaxy, too. Most of the star formation happened earlier in the universe, at a time when there was a much lower percentage of heavy elements than there is now. Dust is a critical part of how a galaxy works, how it forms stars.”

The image is part of a study called Small Magellanic Cloud Investigation of Dust and Gas Evolution (SMIDGE). The data used in this image were taken with Hubble’s Advanced Camera for Surveys in September 2015.

Adblock test (Why?)

Source link

Continue Reading


When To See An ‘Earth-Grazer’ This Weekend: Don’t Write-Off The Perseid Meteor Shower, Says Expert – Forbes



If you’ve ever laid down a blanket or set up a lawn chair to watch a meteor shower there’s a good chance it was to watch the Perseids.

Due to peak at 01:00 UT on Saturday, August 13, 2022, normal advice would be to be outside at that time (in Europe) or just as soon as its gets dark on Friday, August 12 (North America).

As I’ve already reported, this year the Perseids coincides with a full Moon, so all but the brightest meteors and “fireballs” (larger, brighter meteors) will be visible. So from the 50-75-or-so “shooting stars” you might normally see during the peak of the Perseids only a few—albeit bright—meteors will be visible.

It’s almost not worth the bother, I said, advising you to go watch this instead next weekend.

However, there is another opinion. In an article published on the American Meteor Society’s website, fireball coordinator Robert Lunsford says that despite the bright full Moon visible meteor rates during the peak of the Perseid meteor shower will be better than 95% of all other nights this year.

When to see the Perseid meteor shower

“Most of the Perseid meteors are faint and bright moonlight will make it difficult to view,” he writes. “Despite the glare of moonlight, the Perseids produce many bright meteors that can still be easily seen despite the bright moonlight.”

He also advises two great times to watch for shooting stars—just after sunset on Friday, August 12 and just before dawn on Saturday, August 13.

Perseids: ‘Earth-grazers’ just after sunset

You’ll need patience, but to see an “Earth-grazer” is unforgettable.

Just after sunset is actually thee worst time in terms of numbers of shooting stars you might see, but the few that do come your way this time of night are special.” The reason is that they just skim the upper regions of the atmosphere and will last much longer than Perseids seen during the morning hours,” writes Lunsford. “Most of these “earth-grazing” Perseids will be seen low in the east or west, traveling north to south.”

Perseids: ‘shooting stars’ before dawn

The activity from the Perseid meteor shower will peak where you are as the radiant—the constellation of Perseus—rises higher into the night sky. “Theoretically, the best time to watch the Perseids is just before the break of dawn when the radiant lies highest in a dark sky,” writes Lunsford. That’s about 04:00 local time, though he also reveals that experienced observers often say the hour between 03:00 and 04:00 is usually the best.

Perseids: ‘shooting stars’ in a moonless sky

If you want to look for Perseids in a dark, moonless sky then you’re mostly out of luck this year. By the time the full Moon is rising long after midnight the meteor rates will have vastly reduced, though it may be worth shooting star-gazing after August 19, 2022.

When is the Perseid meteor shower in 2023?

The Perseid meteor shower will next year peak—in thankfully moonless skies—at around 07:00 UT on August 13, 2023 (so 03:00 EST and midnight PST), which will be ideal for North America.

Wishing you clear skies and wide eyes.

Adblock test (Why?)

Source link

Continue Reading


Meet Qikiqtania, a fossil fish who stayed in the water while others ventured onto land – Big Think



Approximately 365 million years ago, one group of fishes left the water to live on land. These animals were early tetrapods, a lineage that would radiate to include many thousands of species including amphibians, birds, lizards and mammals. Human beings are descendants of those early tetrapods, and we share the legacy of their water-to-land transition.

But what if, instead of venturing onto the shores, they had turned back? What if these animals, just at the cusp of leaving the water, had receded to live again in more open waters?

A new fossil suggests that one fish, in fact, did just that. In contrast to other closely related animals, which were using their fins to prop their bodies up on the bottom of the water and perhaps occasionally venturing out onto land, this newly discovered creature had fins that were built for swimming.

Tom Stewart holds the Qikiqtania fossil. (Stephanie Sang / CC BY-ND)

In March 2020, I was at The University of Chicago and a member of biologist Neil Shubin’s lab. I was working with Justin Lemberg, another researcher in our group, to process a fossil that was collected back in 2004 during an expedition to the Canadian Arctic.

From the surface of the rock it was embedded in, we could see fragments of the jaws, about 2 inches long (5 cm) and with pointed teeth. There were also patches of white scales with bumpy texture. The anatomy gave us subtle hints that the fossil was an early tetrapod. But we wanted to see inside the rock.

Smarter faster: the Big Think newsletter

Subscribe for counterintuitive, surprising, and impactful stories delivered to your inbox every Thursday

Notice: JavaScript is required for this content.

So we used a technology called CT scanning, which shoots X-rays through the specimen, to look for anything that might be hidden within, out of view. On March 13, we scanned an unassuming piece of rock that had a few scales on top and discovered it contained a complete fin buried inside. Our jaws dropped. A few days later, the lab and campus shut down, and COVID-19 sent us into lockdown.

The fin revealed

A fin like this is extremely precious. It can give scientists clues into how early tetrapods were evolving and how they were living hundreds of millions of years ago. For example, based on the shape of certain bones in the skeleton, we can make predictions about whether an animal was swimming or walking.

Although that first scan of the fin was promising, we needed to see the skeleton in high resolution. As soon as we were allowed back on campus, a professor in the university’s department of the geophysical sciences helped us to trim down the block using a rock saw. This made the block more fin, less rock, allowing for a better scan and a closer view of the fin.

[embedded content]

When the dust had cleared and we’d finished analyzing data on the jaws, scales and fin, we realized that this animal was a new species. Not only that, it turns out that this is one of the closest known relatives to limbed vertebrates – those creatures with fingers and toes.

We named it Qikiqtania wakei. Its genus name, pronounced “kick-kiq-tani-ahh,” refers to the Inuktitut words Qikiqtaaluk or Qikiqtani, the traditional name for the region where the fossil was found. When this fish was alive, many hundreds of millions of years ago, this was a warm environment with rivers and streams. Its species name honors the late David Wake, a scientist and mentor who inspired so many of us in the field of evolutionary and developmental biology.

[embedded content]

Skeletons tell how an animal lived

Qikiqtania reveals a lot about a critical period in our lineage’s history. Its scales tell researchers unambiguously that it was living underwater. They show sensory canals that would have allowed the animal to detect the flow of water around its body. Its jaws tell us that it was foraging as a predator, biting and holding onto prey with a series of fangs and drawing food into its mouth by suction.

But it is Qikiqtania’s pectoral fin that is most surprising. It has a humerus bone, just as our upper arm does. But Qikiqtania’s has a very peculiar shape.

Early tetrapods, like Tiktaalik, have humeri that possess a prominent ridge on the underside and a characteristic set of bumps, where muscles attach. These bony bumps tell us that early tetrapods were living on the bottom of lakes and streams, using their fins or arms to prop themselves up, first on the ground underwater and later on land.

Qikiqtania’s humerus is different. It lacks those trademark ridges and processes. Instead, its humerus is thin and boomerang-shaped, and the rest of the fin is large and paddle-like. This fin was built for swimming.

Whereas other early tetrapods were playing at the water’s edge, learning what land had to offer, Qikiqtania was doing something different. Its humerus is truly unlike any others known. My colleagues and I think it shows that Qikiqtania had turned back from the water’s edge and evolved to live, once again, off the ground and in open water.

Evolution isn’t a march in one direction

Evolution isn’t a simple, linear process. Although it might seem like early tetrapods were trending inevitably toward life on land, Qikiqtania shows exactly the limitations of such a directional perspective. Evolution didn’t build a ladder towards humans. It’s a complex set of processes that together grow the tangled tree of life. New species form and they diversify. Branches can head off in any number of directions.

Neil Shubin, who found the fossil, pointing across the valley to the site where Qikiqtania was discovered on Ellesmere Island. (Neil Shubin / CC BY-ND)

This fossil is special for so many reasons. It’s not just miraculous that this fish was preserved in rock for hundreds of millions of years before being discovered by scientists in the Arctic, on Ellesmere Island. It’s not just that it’s remarkably complete, with its full anatomy revealed by serendipity at the cusp of a global pandemic. It also provides, for the first time, a glimpse of the broader diversity and range of lifestyles of fishes at the water-to-land transition. It helps researchers see more than a ladder and understand that fascinating, tangled tree.

Discoveries depend on community

Qikiqtania was found on Inuit land, and it belongs to that community. My colleagues and I were only able to conduct this research because of the generosity and support of individuals in the hamlets of Resolute Bay and Grise Fiord, the Iviq Hunters and Trappers of Grise Fiord, and the Department of Heritage and Culture, Nunavut. To them, on behalf of our entire research team, “nakurmiik.” Thank you. Paleontological expeditions onto their land have truly changed how we understand the history of life on Earth.

COVID-19 kept many paleontologists from traveling and visiting field sites across the world these last few years. We’re eager to return, to visit with old friends and to search again. Who knows what other animals lie hidden, waiting to be discovered inside blocks of unassuming stone.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Adblock test (Why?)

Source link

Continue Reading