adplus-dvertising
Connect with us

Science

Life found in rocks beneath ocean floor give scientists hope of finding life on Mars

Published

 on

When scientists find microbial life thriving in some of the most extreme environments on Earth, it gives them hope that they may be able to find life on other planets.

Now, researchers have discovered billions of bacteria living in tiny cracks in volcanic rocks beneath the ocean floor, more than nine miles below the surface of the ocean and an additional 300 feet below the ocean floor, according to a new study published Thursday.

And they believe that similar tiny, clay-filled cracks in rocks on Mars or below its surface could be a similar hub for life.

The upper oceanic crust, known as the ocean floor, has been continuously created on Earth for about 3.8 billion years. Underwater volcanoes release lava at 2,200 degrees Fahrenheit that solidifies into basaltic rock as the hot rock reacts to the cold ocean deep.

Hydrothermal vents along the ocean floor have been known to sustain bacteria and other life that convert minerals into energy, rather than light.

Previously, researchers have studied bacteria systems that were between 3.5 and 8 million years old. But 90% of the ocean floor is much older than that.

Yohey Suzuki, an associate professor in the University of Tokyo’s Department of Earth and Planetary Science, and his colleagues investigated samples of basaltic lava found 328 feet below the ocean floor between Tahiti and New Zealand that ranged from 33 to 104 million years old.

There, they found a wealth of single-celled microbial life living in tiny cracks among the rock, which were rich with iron and clay. To be exact, they estimate that 10 billion bacterial cells live per cubic centimeter in these communities. (Bacteria known to live in mud along the seafloor pales in comparison, at 100 cells per cubic centimeter.)

The researchers believe the iron content in the clay found deep below the ocean floor supports the growth of such large bacterial communities. The study published in the journal Communications Biology.

“I thought it was a dream, seeing such rich microbial life in rocks,” Suzuki said, “I am now almost over-expecting that I can find life on Mars. If not, it must be that life relies on some other process that Mars does not have, like plate tectonics.”

From the ocean floor to Mars

The cracks form when the lava cools, creating narrow spaces less than one millimeter across. Millions of years of residue and buildup fill them with mineral-infused clay. Then, bacteria find a nice home in them and settle in.

“These cracks are a very friendly place for life. Clay minerals are like a magic material on Earth; if you can find clay minerals, you can almost always find microbes living in them,” Suzuki said.

The bacteria Suzuki and his colleagues found is similar to how our cells make energy, a process that relies on organic nutrients in oxygen. Instead of the resources humans get from Earth’s surface, they get what they need from the clay minerals.

Clay is something that NASA’s Curiosity rover has explored quite a bit on Mars.

Since Curiosity landed in 2012, it’s been exploring Gale Crater, a vast and dry ancient lake bed with a 16,404-foot mountain — Mount Sharp — at its center.

Streams and lakes likely filled Gale Crater billions of years ago, which is why NASA landed the rover there in 2012. Scientists want to know if ancient Mars once supported microbial life.

Mars, like Earth, also has a basaltic crust that formed four billion years ago. And in recent years, subsurface water and methane have been detected on the Red Planet.

Curiosity has observed and drilled samples of rocks rich in clay from the lake bed.

The clay minerals present in those rocks on the Martian surface could be similar to those in the ocean rock cracks.

“Minerals are like a fingerprint for what conditions were present when the clay formed. Neutral to slightly alkaline levels, low temperature, moderate salinity, iron-rich environment, basalt rock — all of these conditions are shared between the deep ocean and the surface of Mars,” said Suzuki.

His team is collaborating with researchers at NASA’s Johnson Space Center in Houston, Texas, to come up with a plan for examining and analyzing rock samples that will one day be returned from Mars.

A 3D X-ray could help them peek inside the samples and search for cracks filled with minerals — and maybe find evidence of life.

“This discovery of life where no one expected it in solid rock below the seafloor may be changing the game for the search for life in space,” said Suzuki.

Studying the ocean floor

But the quest for bacteria deep beneath the ocean floor is a tricky one.

“Honestly, it was a very unexpected discovery. I was very lucky, because I almost gave up,” said Suzuki.

The samples were collected in 2010 during the Integrated Ocean Drilling Program, an international marine research program, which took researchers from Tahiti to New Zealand. It stopped at three locations along the way, using a 9.7-mile-long metal tube to reach the ocean floor and then drill 410 feet below it. Core samples were retrieved, including mud, sediment and solid rock.

The samples were taken far from hydrothermal vents to prevent contamination, in case the bacteria was carried from one of them to the rocks, and the rocks were sterilized when they were brought up.

Chipping away and grinding the rock didn’t yield any results.

Suzuki, inspired by the thin slices of tissue samples that pathologists use to diagnose diseases, coated the rocks in epoxy to maintain the rock shape, then sliced thin layers. He washed the thin pieces with dye that would stain any DNA present.

Beneath his microscope, he saw green bacterial cells, surrounded by orange clay and black rock. Suzuki was able to conduct whole genome DNA analysis and identify what was living inside the cracks.

He found evidence of life.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

B.C. sets up a panel on bear deaths, will review conservation officer training

Published

 on

 

VICTORIA – The British Columbia government is partnering with a bear welfare group to reduce the number of bears being euthanized in the province.

Nicholas Scapillati, executive director of Grizzly Bear Foundation, said Monday that it comes after months-long discussions with the province on how to protect bears, with the goal to give the animals a “better and second chance at life in the wild.”

Scapillati said what’s exciting about the project is that the government is open to working with outside experts and the public.

“So, they’ll be working through Indigenous knowledge and scientific understanding, bringing in the latest techniques and training expertise from leading experts,” he said in an interview.

B.C. government data show conservation officers destroyed 603 black bears and 23 grizzly bears in 2023, while 154 black bears were killed by officers in the first six months of this year.

Scapillati said the group will publish a report with recommendations by next spring, while an independent oversight committee will be set up to review all bear encounters with conservation officers to provide advice to the government.

Environment Minister George Heyman said in a statement that they are looking for new ways to ensure conservation officers “have the trust of the communities they serve,” and the panel will make recommendations to enhance officer training and improve policies.

Lesley Fox, with the wildlife protection group The Fur-Bearers, said they’ve been calling for such a committee for decades.

“This move demonstrates the government is listening,” said Fox. “I suspect, because of the impending election, their listening skills are potentially a little sharper than they normally are.”

Fox said the partnership came from “a place of long frustration” as provincial conservation officers kill more than 500 black bears every year on average, and the public is “no longer tolerating this kind of approach.”

“I think that the conservation officer service and the B.C. government are aware they need to change, and certainly the public has been asking for it,” said Fox.

Fox said there’s a lot of optimism about the new partnership, but, as with any government, there will likely be a lot of red tape to get through.

“I think speed is going to be important, whether or not the committee has the ability to make change and make change relatively quickly without having to study an issue to death, ” said Fox.

This report by The Canadian Press was first published Sept. 9, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

Science

Asteroid Apophis will visit Earth in 2029, and this European satellite will be along for the ride

Published

 on

Asteroid Apophis

The European Space Agency is fast-tracking a new mission called Ramses, which will fly to near-Earth asteroid 99942 Apophis and join the space rock in 2029 when it comes very close to our planet — closer even than the region where geosynchronous satellites sit.

Ramses is short for Rapid Apophis Mission for Space Safety and, as its name suggests, is the next phase in humanity’s efforts to learn more about near-Earth asteroids (NEOs) and how we might deflect them should one ever be discovered on a collision course with planet Earth.

In order to launch in time to rendezvous with Apophis in February 2029, scientists at the European Space Agency have been given permission to start planning Ramses even before the multinational space agency officially adopts the mission. The sanctioning and appropriation of funding for the Ramses mission will hopefully take place at ESA’s Ministerial Council meeting (involving representatives from each of ESA’s member states) in November of 2025. To arrive at Apophis in February 2029, launch would have to take place in April 2028, the agency says.

This is a big deal because large asteroids don’t come this close to Earth very often. It is thus scientifically precious that, on April 13, 2029, Apophis will pass within 19,794 miles (31,860 kilometers) of Earth. For comparison, geosynchronous orbit is 22,236 miles (35,786 km) above Earth’s surface. Such close fly-bys by asteroids hundreds of meters across (Apophis is about 1,230 feet, or 375 meters, across) only occur on average once every 5,000 to 10,000 years. Miss this one, and we’ve got a long time to wait for the next.

When Apophis was discovered in 2004, it was for a short time the most dangerous asteroid known, being classified as having the potential to impact with Earth possibly in 2029, 2036, or 2068. Should an asteroid of its size strike Earth, it could gouge out a crater several kilometers across and devastate a country with shock waves, flash heating and earth tremors. If it crashed down in the ocean, it could send a towering tsunami to devastate coastlines in multiple countries.

Over time, as our knowledge of Apophis’ orbit became more refined, however, the risk of impact  greatly went down. Radar observations of the asteroid in March of 2021 reduced the uncertainty in Apophis’ orbit from hundreds of kilometers to just a few kilometers, finally removing any lingering worries about an impact — at least for the next 100 years. (Beyond 100 years, asteroid orbits can become too unpredictable to plot with any accuracy, but there’s currently no suggestion that an impact will occur after 100 years.) So, Earth is expected to be perfectly safe in 2029 when Apophis comes through. Still, scientists want to see how Apophis responds by coming so close to Earth and entering our planet’s gravitational field.

“There is still so much we have yet to learn about asteroids but, until now, we have had to travel deep into the solar system to study them and perform experiments ourselves to interact with their surface,” said Patrick Michel, who is the Director of Research at CNRS at Observatoire de la Côte d’Azur in Nice, France, in a statement. “Nature is bringing one to us and conducting the experiment itself. All we need to do is watch as Apophis is stretched and squeezed by strong tidal forces that may trigger landslides and other disturbances and reveal new material from beneath the surface.”

The Goldstone radar’s imagery of asteroid 99942 Apophis as it made its closest approach to Earth, in March 2021. (Image credit: NASA/JPL–Caltech/NSF/AUI/GBO)

By arriving at Apophis before the asteroid’s close encounter with Earth, and sticking with it throughout the flyby and beyond, Ramses will be in prime position to conduct before-and-after surveys to see how Apophis reacts to Earth. By looking for disturbances Earth’s gravitational tidal forces trigger on the asteroid’s surface, Ramses will be able to learn about Apophis’ internal structure, density, porosity and composition, all of which are characteristics that we would need to first understand before considering how best to deflect a similar asteroid were one ever found to be on a collision course with our world.

Besides assisting in protecting Earth, learning about Apophis will give scientists further insights into how similar asteroids formed in the early solar system, and, in the process, how  planets (including Earth) formed out of the same material.

One way we already know Earth will affect Apophis is by changing its orbit. Currently, Apophis is categorized as an Aten-type asteroid, which is what we call the class of near-Earth objects that have a shorter orbit around the sun than Earth does. Apophis currently gets as far as 0.92 astronomical units (137.6 million km, or 85.5 million miles) from the sun. However, our planet will give Apophis a gravitational nudge that will enlarge its orbit to 1.1 astronomical units (164.6 million km, or 102 million miles), such that its orbital period becomes longer than Earth’s.

It will then be classed as an Apollo-type asteroid.

Ramses won’t be alone in tracking Apophis. NASA has repurposed their OSIRIS-REx mission, which returned a sample from another near-Earth asteroid, 101955 Bennu, in 2023. However, the spacecraft, renamed OSIRIS-APEX (Apophis Explorer), won’t arrive at the asteroid until April 23, 2029, ten days after the close encounter with Earth. OSIRIS-APEX will initially perform a flyby of Apophis at a distance of about 2,500 miles (4,000 km) from the object, then return in June that year to settle into orbit around Apophis for an 18-month mission.

Related Stories:

Furthermore, the European Space Agency still plans on launching its Hera spacecraft in October 2024 to follow-up on the DART mission to the double asteroid Didymos and Dimorphos. DART impacted the latter in a test of kinetic impactor capabilities for potentially changing a hazardous asteroid’s orbit around our planet. Hera will survey the binary asteroid system and observe the crater made by DART’s sacrifice to gain a better understanding of Dimorphos’ structure and composition post-impact, so that we can place the results in context.

The more near-Earth asteroids like Dimorphos and Apophis that we study, the greater that context becomes. Perhaps, one day, the understanding that we have gained from these missions will indeed save our planet.

 

728x90x4

Source link

Continue Reading

Trending