Connect with us

Science

NASA Artemis1 to carry ASU CubeSat into space – Phys.org

Published

 on


LunaH-Map team (L-R) Joe DuBois, Tyler O’Brien, Nathaniel Streubel, Craig Hardgrove (NASA Principal Investigator). Credit: ASU School of Earth and Space Exploration

The Lunar Polar Hydrogen Mapper (LunaH-Map) mission is one of the tiniest NASA planetary science missions but has big science goals. Previous missions and studies have identified the presence of water-ice at the Moon’s poles. However, there are still unanswered questions about how much water-ice is contained within permanently shadowed regions.

It is also unknown how much water-ice might be retained at depth throughout illuminated regions of the lunar South Pole. LunaH-Map will answer those questions by entering around the Moon and producing a neutron map that will reveal where and how much water-ice is hidden across the lunar South Pole.

LunaH-Map will help us understand the origins of water on the Moon and how it has been redistributed since the Moon’s formation. The maps will also be used to plan future missions and landing sites for robotic and human water-ice prospecting.

CubeSat will find and map water ice at the Moon’s South Pole. Credit: ASU School of Earth and Space Exploration

What we hope to learn from the LunaH-Map CubeSat. Credit: ASU School of Earth and Space Exploration

Explore further

NASA’s moon-observing CubeSat is ready for Artemis launch


Citation:
NASA Artemis1 to carry ASU CubeSat into space (2022, August 26)
retrieved 26 August 2022
from https://phys.org/news/2022-08-nasa-artemis1-asu-cubesat-space.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Adblock test (Why?)



Source link

Continue Reading

Science

NASA Wants To Mine The Moon, But Law Experts Say It's Not That Simple – SlashGear

Published

 on


The first roadblock facing humans as we seek to expand our presence in the solar system lies in technology. NASA reports that it takes about seven months (measured in Earth days) to travel from our planet’s surface to Mars. Thrillist notes that travel to the Moon only requires a three-day journey, while exploration of Jupiter or Saturn (the next bodies out from Mars) would require a lengthy, six- or seven-year voyage, respectively. On a technical level, our current means of launching satellites and humans at these distant bodies is exactly that, a launch (via NASA). In order to make space travel more feasible for human explorers, we would need to develop a propulsion system that could continually deliver powered flight to a spacecraft, or at least the ability to continually augment flight speed, rather than simply relying on initial launch velocity to carry the craft along to its final destination.

This means a combination of two distinct realities: Humans must develop a brand new means of propulsion that requires far less storage space and mass, a revolutionary idea to be sure; and we must develop the ability to hop between planets and refuel along this lengthy journey. Therefore, technological advancement that would support increased space travel would require both colonization and a capacity for extracting mineral resources from the surfaces of neighboring planets and moons. Continuous habitation in new worlds would be required to support these efforts.

Adblock test (Why?)



Source link

Continue Reading

Science

Good planning gets the bike rolling – Science Daily

Published

 on


In surveys, a large majority of respondents usually agree that cycling can make a significant contribution to reducing greenhouse gases and to sustainable transport, especially in densely populated areas. In contrast, for many countries in reality there is a large gap between desired and actual numbers. In Germany, for example, only 20% of the short-distance of everyday trips in residential environments are covered by bicycle.

When asked about the reasons, one point repeatedly comes up top of the list: The perceived or actual lack of safety on the bike routes used. Increasing the share of cycling trips in the modal split thus depends crucially on a well-developed bike path infrastructure. However, designing efficient bike path networks is a complex problem that involves balancing a variety of constraints while meeting overall cycling demand. In addition, many municipalities still only have small budgets available for improving bicycle infrastructure.

In their study, researchers from the Chair of Network Dynamics / Center for Advancing Electronics Dresden (cfaed) at TU Dresden propose a new approach to generate efficient bike path networks. This explicitly considers the demand distribution and route choice of cyclists based on safety preferences. Typically, minimizing the travel distance is not the only goal, but aspects such as (perceived) safety or attractiveness of a route are also taken into account.

The starting point of this approach is a reversal of the usual planning process: Under real conditions, a bike path network is created by constantly adding bike paths to more streets. The cfaed scientists, on the contrary, start with an ideal, complete network, in which all streets in a city are equipped with a bike path. In a virtual process, they gradually remove individual, less used bike path segments from this network. The route selection of the cyclists is continuously updated. Thus, a sequence of bike path networks is created that is always adapted to the current usage. Each stage of this sequence corresponds to a variant that could be implemented with less financial effort. In this way, city planners can select the version that fits their municipality’s budget.

“In our study, we illustrate the applicability of this demand-driven planning scheme for dense urban areas of Dresden and Hamburg,” explains Christoph Steinacker, first author of the study. “We approach a real-life issue here using the theoretic toolbox of network dynamics. Our approach allows us to compare efficient bike path networks under different conditions. For example, it allows us to measure the influence of different demand distributions on the emerging network structures.” The proposed approach can thus provide a quantitative assessment of the structure of current and planned bike path networks and support demand-driven design of efficient infrastructures.

Story Source:

Materials provided by Technische Universität Dresden. Note: Content may be edited for style and length.

Adblock test (Why?)



Source link

Continue Reading

Science

Laughing gas in space could mean life

Published

 on

To date, over 5000 exoplanetary systems have been discovered. Biosignatures are chemical components in a planet’s atmosphere that may indicate life, and they frequently include abundant gases in our planet’s atmosphere.

Scientists at UC Riverside suggest something is missing from the typical roster of chemicals astrobiologists use to search for life on planets around other stars — laughing gas.

Eddie Schwieterman, an astrobiologist in UCR’s Department of Earth and Planetary Sciences, said, “There’s been a lot of thought put into oxygen and methane as biosignatures. Fewer researchers have seriously considered nitrous oxide, but we think that may be a mistake.”

To reach this conclusion, scientists determined how much nitrous oxide a planet like Earth could conceivably produce. After that, they created simulations of that planet orbiting various types of stars and calculated the amounts of N2O that could be captured by a telescope like the James Webb Space Telescope.

Nitrous oxide, or N2O, is a gas produced in various ways by living things. Microorganisms continuously convert other nitrogen molecules into N2O through a metabolic process that can produce useful cellular energy.

Schwieterman said, “Life generates nitrogen waste products that are converted by some microorganisms into nitrates. In a fish tank, these nitrates build-up, which is why you have to change the water. However, under the right conditions in the ocean, certain bacteria can convert those nitrates into N2O. The gas then leaks into the atmosphere.”

N2O can be found in an environment and still not be an indication of life in some situations. This was considered in the new modeling. For instance, lightning can produce a small amount of nitrous oxide. However, lightning also produces nitrogen dioxide, giving astrobiologists a hint that non-living meteorological or geological processes produced the gas.

Others who have considered N2O as a biosignature gas often conclude it would be difficult to detect from so far away. Schwieterman explained that this conclusion is based on N2O concentrations in Earth’s atmosphere today. Because there isn’t much of it on this planet, which is teeming with life, some believe it would also be hard to detect elsewhere.

Schwieterman said“This conclusion doesn’t account for periods in Earth’s history where ocean conditions would have allowed for the much greater biological release of N2O. Conditions in those periods might mirror where an exoplanet is a today.”

“Common stars like K and M dwarfs produce a light spectrum that is less effective at breaking up the N2O molecule than our sun is. These two effects combined could greatly increase the predicted amount of this biosignature gas on an inhabited world.”

The study was conducted in collaboration with Purdue University, the Georgia Institute of Technology, American University, and the NASA Goddard Space Flight Center.

Journal Reference:

  1. Edward W. Schwieterman, Stephanie L. Olson et al. Evaluating the Plausible Range of N2O Biosignatures on Exo-Earths: An Integrated Biogeochemical, Photochemical, and Spectral Modeling Approach. The Astrophysical Journal. DOI: 10.3847/1538-4357/ac8cfb

Source link

Continue Reading

Trending