adplus-dvertising
Connect with us

Science

NASA, Boeing aim to deliver first SLS core stage to Kennedy Space Center by this fall – Spaceflight Now

Published

 on


The first fully-assembled core stage for NASA’s Space Launch System moon rocket rolled out of its factory Wednesday and was loaded in a specially-designed barge for transport to the Stennis Space Center in Mississippi for testing. Credit: NASA

After years of delays, the core stage for NASA’s first Space Launch System moon rocket rolled out of its New Orleans factory Wednesday, heading for a NASA site in Mississippi for a test-firing before engineers hope to ship the rocket to its Florida launch base by this fall.

A target launch date for the first SLS test flight, which will carry an unpiloted Orion crew capsule beyond the moon, is expected in 2021. But more specific schedule remains uncertain.

Teams loaded the first fully-assembled SLS core stage inside NASA’s Pegasus barge at a wharf adjoining NASA’s Michoud Assembly Facility after a 1.3-mile (2.1-kilometer) trip from the rocket’s factory, the same location where previous generations of technicians manufactured the massive first stage of the Saturn 5 moon rocket and the external fuel tank for the space shuttle.

300x250x1

Covered in orange insulating foam, the core stage is fitted with four Aerojet Rocketdyne RS-25 main engines. Each of the reusable hydrogen-fueled engines powered multiple space shuttle missions, but they will be discarded with the SLS core stage, which is only designed for a single flight.

Built by Boeing, the SLS core stage emerged from its factory at Michoud — located on the east side of New Orleans — Wednesday morning with a bit of New Orleans pomp. Some SLS team members wore shiny bead necklaces, and a “second line” New Orleans drum and brass band accompanied the rocket on the trek out of the factory.

“That’s a whole lot of rocket,” said Jim Morhard, NASA’s deputy administration. “We are talking about a national asset.”

The 212-foot-long (64.6-meter), 27.6-foot-wide (8.4-meter) SLS core stage has the same diameter as the shuttle’s fuel tank. It weighs about 188,000 pounds (85 metric tons) empty, and will weigh around 2.3 million pounds (more than 1,000 metric tons) fully fueled.

The first SLS core stage, when completed, is more than 6,000 pounds lighter than officials originally expected, according to John Shannon, vice president and general manager for the SLS program at Boeing.

NASA started working on the SLS program in 2011, following the cancellation of the Constellation moon program. The development timeline at that time called for the first launch of the SLS in 2017.

Since 2011, NASA has spent more than $15 billion on developing the Space Launch System.

Development of the SLS was first geared toward NASA’s push to send humans to Mars under the Obama administration, then redirected under the umbrella of Artemis program started by the Trump administration aimed at returning humans to lunar surface in the 2020s.

Despite criticism stemming from the cost of the SLS and repeated schedule slips, NASA and Boeing officials this week said they have a renewed focus on delivering the core stage to the Kennedy Space Center for launch preparations by the end of this year.

“Seven years ago, you had preliminary design and no real factory, and here she is,” said Jim Chilton, senior vice president of Boeing’s space and launch division. “This is not a trivial accomplishment. In the last year-and-a-half, the NASA/Boeing team invented how to build one of these things, just absolutely invented it on the (factory) floor.”

In response to the most recent series of delays, which were primarily caused by issues with assembling the first core stage engine section, Boeing reconfigured the work flow inside the Michoud Assembly Facility, opting to connect the stage’s liquid hydrogen and liquid oxygen tanks before adding the engine section in a horizontal configuration inside the factory.

“I think there was an expectation that Boeing built space station, albeit decades ago, Boeing builds airplanes — they ought to be able to do this. Why are they having problems?” said John Honeycutt, a veteran NASA program manager who leads the space agency’s SLS effort at the Marshall Space Flight Center. “A rocket’s just different. We basically just had an empty factory for them. I think there was a mindset that they’ve got a facility, they’ve got a design, why can’t they just build the rocket?

“If you look back over the past 12-to-18 months, they’ve done a pretty dang good job of holding schedule, Honeycutt said.

The core stage’s four engines are upgraded with modernized electronics and rated for slightly higher throttle settings than they were in the shuttle program.

Credit: Stephen Clark / Spaceflight Now

The RS-25 engines will be ignited later this year on a test stand at the Stennis Space Center in southern Mississippi during a “green run” test series designed to confirm the rocket works as designed when loaded with more than 700,000 gallons of super-cold liquid hydrogen and liquid oxygen propellants.

The four RS-25 engines will power up to full throttle to generate nearly 2 million pounds of thrust during the hotfire test.

“This vehicle, as a result of the human-rating of it, it’s gone through an extremely rigorous series of tests,” Shannon said. “That will culminate with the green run, where we do those tests at cryogenic conditions and finally end up with the full mission duty cycle hotfire.

“So by the time we take this vehicle to the Kennedy Space Center, it will be an extremely well-understood vehicle ,and we have really high confidence in flying it, and for the second flight, (with) crew.”

Before the hotfire at Stennis, crews must first raise the core stage vertical and hoist it into the enormous B-2 test stand.

Technicians will make final connections between the core stage’s liquid hydrogen tank, which sits below the rocket’s first stage liquid oxygen tank, and the four RS-25 engines. Those fittings are easier to secure while the rocket is vertical, and the change at Michoud to install the engine section horizontally forced officials to put off the hydrogen feed line connections until the core stage is at Stennis.

Engineers will also perform a modal test on the core stage to measure the resonant frequency of the rocket. That data will be fed into models to help predict how the rocket will fly.

Once the core stage is firmly attached to the B-2 test stand, engineers will switch on the rocket’s avionics and begin powering up control computers, instrumentation and other equipment for the green run test.

Then test teams will load super-cold liquid hydrogen and liquid oxygen propellants into the core stage for the first time.

Subjecting the intricate plumbing inside the core stage to cryogenic temperatures — minus 423 degrees (minus 253 degrees Celsius) in the case of liquid hydrogen, and minus 298 degrees Fahrenheit (minus 183 degrees Celsius) for liquid oxygen — will stress the propellant tanks and propulsion system.

“Filling everything with cryo is huge because that’s the first time you have your tanks moving the way they’re going to move when they’re filled with cryo fluid,” said Alex Cagnola, a propulsion engineer at NASA’s Marshall Space Flight Center, which manages the SLS program. “You’re testing all your joints. You’re testing how everything basically acts under a cryogenic environment.”

Shannon agreed, highlighting the core stage’s response to cryogenic propellant as a big unknown.

“We did a very comprehensive set of functional testing on the vehicle (before it left the factory), and that included pressure tests, seal checks ,all the electrical tests we could think of, software checks and things like that,” Shannon said. “And the vehicle came through really with flying colors. We found no real issues with the design or the way it was produced.

“But things change when you get down at cryogenic temperatures, and as we saw after our experience with the shuttle, you can end up having systems perform differently,” said Shannon, a former NASA flight director and space shuttle program manager.

Teams will check for leaks once the rocket is loaded with more than 730,000 gallons of super-cold propellants.

“The next big unknown as a program is when we put the cryogenic liquids in the oxygen tank and the hydrogen tank, and we look at the plumbing and all the systems and make sure that they remain tight, and that they perform as expected through our qualification test,” Shannon told reporters Wednesday. “We have high confidence that they will, but until you see it in an integrated fashion, you don’t really know.”

Credit: Stephen Clark / Spaceflight Now

Assuming the fueling demonstration goes well, managers will give the go-ahead a few weeks later to fuel the core stage again for the eight-minute test-firing of the RS-25 engines.

Honeycutt said the hotfire test could happen in June, assuming teams encounter no major problems.

Shannon said the test-firing will satisfy engineering requirements if the engines run for a little more than two minutes. If a ground system problem forces a premature cutoff of the engines after that point, managers could decide to declare the test complete and begin preparations to transport the rocket to Florida.

If a problem on the rocket itself causes an engine shutdown, managers will likely want to perform another hotfire test at Stennis before shipping the core stage to the Kennedy Space Center.

“One big difference with the way SLS is built than with shuttle is we take a bleed off the hydrogen exhaust to be able to drive the hydraulic power units (for the first stage’s thrust vector control engine gimbal and steering system),” Shannon said. “We also take that same bleed coming off the connection to build the hydrogen tank pressure.

“When the hydrogen tank is at a level of about two-thirds down, we’re going to really aggressively gimbal the four engines, it’s going to put a lot of pressure on the ability to continue to feed those hydraulic power units and provide sufficient pressure to the liquid hydrogen tank. It’s one of the major tests, and the reason we’re doing the green run.

“That’s a very different thing. You wouldn’t it see in flight, but it gives us a very good stress test on that part of the design of the vehicle to show we can keep the tank pressurized while we’re aggressively gimbaling at a very low level in the liquid hydrogen tank.”

Technicians will inspect the core stage after the hotfire test for damage to its foam insulation, which is made of different materials than the foam used on the space shuttle external tank. Engine inspections and refurbishment will also be required after the test-firing.

“There’s a little bit of refurbishment that happens after hotfire,” said Cagnola, a NASA propulsion engineer. “Aerojet Rocketdyne has to take a look at their engines. They assess all the nozzles. They assess all the parts in there. They have to remove the aluminum tape on the boat-tail after hotfire. They’ll have to asses the condition of the (paint) under there. They’ll have to assess all the outside and inside components.”

NASA and Boeing managers plan to perform some of the refurbishment on the core stage after it is delivered to Kennedy, where technicians will have a more controlled environment to perform their work inside the Vehicle Assembly Building, rather than in the open on the B-2 test stand at Stennis.

“If everything went perfectly, and we didn’t have any kind of weather issues on the stand that would halt work, if the vehicle performs completely as expected and we didn’t have any refurbishment, we’d be out (of Stennis) probably in the late summer timeframe, the July/August timeframe,” Shannon said.

If teams are Stennis have to contend with inclement weather, or some repairs are needed after the test-firing, the rocket could be delivered to Kennedy later in the year, Shannon said.

“The range I think would be July/August if everything goes perfectly, to the October timeframe if we deal with the typical weather or the typical damage that happens to things like the thermal protection system after that eight-minute firing,” Shannon said.

Once at the Kennedy Space Center in Florida, the core stage will join two side-mounted solid-fueled boosters — also using modified space shuttle technology — and an upper stage derived from United Launch Alliance’s Delta 4-Heavy rocket.

The SLS will blast off from pad 39B at the Florida spaceport some time in 2021. A target launch date is still under review after a series of delays have pushed back the SLS’s inaugural test flight from its original schedule in 2017.

The first launch, designated Artemis 1, will carry NASA’s Orion crew capsule on an unpiloted flight into lunar orbit and back to Earth. Boeing teams at Michoud are building a second SLS core stage for the Artemis 2 mission, which could blast off in 2022 or 2023 to carry another Orion vehicle with four astronauts around the moon and back.

The Artemis program’s third mission, planned for 2024, could include an attempt to land astronauts on the moon, a five-year goal set by Vice President Mike Pence last year.

In parallel with the development of the SLS, NASA is kicking off procurement of a human-rated lunar lander. The agency is expected to select multiple industry teams in the coming months to begin developing a moon lander, before choosing a single design to attempt a landing in 2024, and another team to try for a landing in 2025.

NASA is also planning to built a mini-space station lunar orbit called the Gateway to serve as a research platform and waypoint for crews transiting between Earth and the lunar surface.

The ULA-built upper stage for the first SLS mission is in storage at the Kennedy Space Center, waiting for arrival of the core stage. All 10 segments of the two solid rocket boosters for the Artemis 1 launch are fueled with their pre-packed propellant at a Northrop Grumman facility in Utah, awaiting NASA’s go-ahead for their railroad journey to Florida.

Artist’s concept of stacking of the Space Launch System inside the Vehicle Assembly Building at the Kennedy Space Center. In this illustration, the orange SLS core stage, two solid rocket boosters and the upper stage are visible, while a crane lowers the Orion spacecraft atop the launch vehicle. Credit: NASA

The SLS will be stacked inside Vehicle Assembly Building high bay atop a towering mobile launch platform, which will carry the rocket from the VAB to pad 39B at the Florida launch base, riding one of NASA’s Apollo-era huge diesel-powered crawler transporters.

Meanwhile, production of the next two SLS core stages is underway at Michoud.

Both propellant tanks for the second SLS core stage — for the rocket’s first crewed launch — have been welded and are undergoing testing before they receive their insulation. Outfitting of the engine section has also started at Michoud.

Shannon said Boeing is targeting completion of the fully-assembled core stage for the Artemis 2 mission in March 2022. NASA does not plan to perform a green run test on future SLS core stages, so the rocket will be delivered directly from Louisiana to the Kennedy Space Center.

Parts for the Artemis 3 core stage are also being readied at Michoud.

Meanwhile, Boeing engineers at Michoud expect to resume work on a new four-engine upper stage for future SLS missions. The new Exploration Upper Stage, which will improve the SLS lift capability, could be ready in time to replace the single-engine ULA-built upper stage for the Artemis 4 mission in the 2025 timeframe.

“We throttled back the funding for EUS as a result of the delays on the core stage, primarily,” Honeycutt said. “We have gotten favorable appropriations pretty much every year, so … given that we get favorable appropriations, we’re going to start ramping up on EUS this year.

“John (Shannon from Boeing) thinks he can get an EUS out in the ’24 timeframe … I’m a little less positive on it than he is,” Honeycutt said. “I think it’s more like in ’25.”

Email the author.

Follow Stephen Clark on Twitter: @StephenClark1.

Let’s block ads! (Why?)

728x90x4

Source link

Continue Reading

Science

NASA's Voyager 1 resumes sending engineering updates to Earth – Phys.org

Published

 on


NASA’s Voyager 1 spacecraft is depicted in this artist’s concept traveling through interstellar space, or the space between stars, which it entered in 2012. Credit: NASA/JPL-Caltech

For the first time since November, NASA’s Voyager 1 spacecraft is returning usable data about the health and status of its onboard engineering systems. The next step is to enable the spacecraft to begin returning science data again. The probe and its twin, Voyager 2, are the only spacecraft to ever fly in interstellar space (the space between stars).

Voyager 1 stopped sending readable science and engineering data back to Earth on Nov. 14, 2023, even though mission controllers could tell the was still receiving their commands and otherwise operating normally. In March, the Voyager engineering team at NASA’s Jet Propulsion Laboratory in Southern California confirmed that the issue was tied to one of the spacecraft’s three onboard computers, called the flight data subsystem (FDS). The FDS is responsible for packaging the science and engineering data before it’s sent to Earth.

300x250x1

The team discovered that a responsible for storing a portion of the FDS memory—including some of the FDS computer’s software code—isn’t working. The loss of that code rendered the science and engineering data unusable. Unable to repair the chip, the team decided to place the affected code elsewhere in the FDS memory. But no single location is large enough to hold the section of code in its entirety.

So they devised a plan to divide affected the code into sections and store those sections in different places in the FDS. To make this plan work, they also needed to adjust those code sections to ensure, for example, that they all still function as a whole. Any references to the location of that code in other parts of the FDS memory needed to be updated as well.

NASA’s Voyager 1 resumes sending engineering updates to Earth
After receiving data about the health and status of Voyager 1 for the first time in five months, members of the Voyager flight team celebrate in a conference room at NASA’s Jet Propulsion Laboratory on April 20. Credit: NASA/JPL-Caltech

The team started by singling out the responsible for packaging the spacecraft’s engineering data. They sent it to its new location in the FDS memory on April 18. A radio signal takes about 22.5 hours to reach Voyager 1, which is over 15 billion miles (24 billion kilometers) from Earth, and another 22.5 hours for a signal to come back to Earth. When the mission flight team heard back from the spacecraft on April 20, they saw that the modification had worked: For the first time in five months, they have been able to check the health and status of the spacecraft.

During the coming weeks, the team will relocate and adjust the other affected portions of the FDS software. These include the portions that will start returning science data.

Voyager 2 continues to operate normally. Launched over 46 years ago, the twin Voyager spacecraft are the longest-running and most distant spacecraft in history. Before the start of their interstellar exploration, both probes flew by Saturn and Jupiter, and Voyager 2 flew by Uranus and Neptune.

Provided by
NASA

Citation:
NASA’s Voyager 1 resumes sending engineering updates to Earth (2024, April 22)
retrieved 22 April 2024
from https://phys.org/news/2024-04-nasa-voyager-resumes-earth.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Osoyoos commuters invited to celebrate Earth Day with the Leg Day challenge – Oliver/Osoyoos News – Castanet.net

Published

 on


Osoyoos commuters can celebrate Earth Day as the Town joins in on a national commuter challenge known as “Leg Day,” entering a chance to win sustainable transportation prizes.

The challenge, from Earth Day Canada, is to record 10 sustainable commutes taken without a car.

300x250x1

“Cars are one of the biggest contributors to gas emissions in Canada,” reads an Earth Day Canada statement. “That’s why, Earth Day Canada is launching the national Earth Day is Leg Day Challenge.”

So far, over 42.000 people have participated in the Leg Day challenge.

Participants could win an iGo electric bike, public transportation for a year, or a gym membership.

The Town of Osoyoos put out a message Monday promoting joining the national program.

For more information on the Leg Day challenge click here.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Science

Early bird may dodge verticillium woes in potatoes – Manitobe Co-Operator

Published

 on


Verticillium wilt is a problem for a lot of crops in Manitoba, including canola, sunflowers and alfalfa.

Read Also

Field stress can translate to potato skin flaws.

In potatoes, the fungus Verticillium dahlia is the main cause of potato early die complex. In a 2021 interview with the Co-operator, Mario Tenuta, University of Manitoba soil scientist and main investigator with the Canadian Potato Early Dying Network, suggested the condition can cause yield loss of five to 20 per cent. Other research from the U.S. puts that number as high as 50 per cent.

It also becomes a marketing issue when stunted spuds fall short of processor preferences.

Verticillium in potatoes can significantly reduce yield and, being soil-borne, is difficult to manage.

Preliminary research results suggest earlier planting of risk-prone fields could reduce losses, in part due to colder soil temperatures earlier in the season.

Unlike other potato fungal issues that can be addressed with foliar fungicide, verticillium hides in the soil.

“Commonly we use soil fumigation and that’s very expensive,” said Julie Pasche, plant pathologist with North Dakota State University.

There are options. In 2017, labels expanded for the fungicide Aprovia, Syngenta’s broad-spectrum answer for leaf spots or powdery mildews in various horticulture crops. In-furrow verticillium suppression for potatoes was added to the label.

There has also been interest in biofumigation. Mustard has been tagged as a potential companion crop for potatoes, thanks to its production of glucosinolate and the pathogen- and pest-inhibiting substance isothiocyanate.

Last fall, producers heard that a new, sterile mustard variety specifically designed for biofumigation had been cleared for sale in Canada, although seed supplies for 2024 are expected to be slim. AAC Guard was specifically noted for its effectiveness against verticillium wilt.

Timing is everything

Researchers at NDSU want to study the advantage of natural plant growth patterns.

“What we’d like to look at are other things we can do differently, like verticillium fertility management and water management, as well as some other areas and how they may be affected by planting date,” Pasche said.

The idea is to find a chink in the fungus’s life cycle.

Verticillium infects roots in the spring. From there, it colonizes the plant, moving through the root vascular tissue and into the stem. This is the cause of in-season vegetative wilting, Pasche noted.

As it progresses, plant cells die, leaving behind tell-tale black dots on dead tissue. Magnification of those dots reveals what look like dark bunches of grapes — tiny spheres containing melanized hyphae, a resting form of the fungus called microsclerotia.

The dark colour comes from melanin, the same pigment found in human skin. This pigmentation protects the microsclerotia from ultraviolet light.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

Trending