adplus-dvertising
Connect with us

Science

NASA is Considering a Radio Telescope on the Far Side of the Moon – Universe Today

Published

 on


The University of Colorado Boulder and Lunar Resources Inc. have just won NASA funding to study the possibility of building a radio telescope on the far side of the Moon. The project, called FarView, would harvest building materials from the Lunar surface itself, and use robotic rovers to construct a massive, intricate network of wires and antennas across 400 square kilometers. When complete, FarView would allow radio astronomers to observe the sky in low-frequency radio wavelengths with unprecedented clarity.

Radio telescopes work best in isolation. On Earth, if radio telescope operators want to ‘hear’ the sky without interference, they need to establish enormous exclusion zones around the telescope where cellphones, wi-fi, and even the spark-plugs from gasoline cars are banned. FarView proposes to put a telescope in the quietest place we can think of, away from Earthlings and our noisy gadgets. With this Lunar observatory, astronomers would be able to listen to the Universe more clearly than ever before, allowing them to go deeper back in time and space, perhaps even to the cosmic dark ages when the first stars were forming.

The Green Bank Radio Telescope, West Virginia, requires a large ‘Quiet Zone’ surrounding it to avoid interference. Credit: Geremia, Wikipedia Commons.

It just might work, although the plan is still in the earliest stages. FarView is funded by NASA’s Innovative Advanced Concepts (NIAC) program, which works with entrepreneurs to fund ideas that are innovative and technically sound, but largely untried and still in their infancy. NIAC projects are a glimpse at the possibilities of space exploration a decade or more in the future. It will be a long road yet to create the proposed Moon-based observatory.

Dr. Alex Ignatiev, Chief Technology Officer of Lunar Resources, is confident they can pull it off, and do so without breaking the bank. “We could build FarView at about 10% of the James Webb Telescope cost and operate for more than 50 years,” he said. It is an impressive goal.

Building with Lunar Soil

The key to keeping costs down is to build FarView using materials already available on the Moon, otherwise known as in-situ resource utilization (ISRU). ISRU has become a buzzword in recent years with regard to Lunar and Martian exploration, as it is will be necessary to sustain long-duration human activity on the Moon and Mars. In this instance, ISRU will allow FarView to reduce the expensive costs of escaping Earth’s pesky gravity well by building the telescope out of Lunar regolith.

The exact manufacturing process for FarView relies on two techniques. The first is molten regolith electrolysis (melting Lunar soil to separate the metals from the oxygen), and the second is vacuum deposition (laying down thin foil-like films of material). Lunar Resources has experience in both techniques on a small scale; they will need to be ramped up to create the enormous FarView observatory.

During a Future In-Space Operations (FISO) telecon presentation last December, Ignatiev explained that the regolith across the Moon is a mix of metallic oxides, with more iron in the Mares and more aluminum in the Highlands, and elements like silicon and magnesium available throughout. “Our challenge then in terms of doing manufacturing on the moon with raw materials,” he said, “is to break that regolith-oxygen bond…and obtain the raw elements from that regolith” using electric currents.

Artist’s depiction of a rover laying down antennas on the far side of the Moon. Credit: Lunar Resources.

A small robotic processing factory would extract these metals from the soil, and deposit them into a rover. FarView’s Principal Investigator, Ronald Polidan, told FISO that as the rover drives along, it “melts the regolith surface into a glass, then lays the metal antennas on that, with connecting wires and all the other necessary infrastructure.” Using this method, it would take 26 months to fabricate the 100,000 ten-meter-long dipoles required for the telescope. The rover would only be able to work during the Lunar days (about two Earth weeks long) and have to hibernate during the nights.

Challenges and Opportunities

Building a Lunar telescope sounds complicated, but its principles are fairly straightforward once the materials are extracted. Laying strips of metal foil across the surface of the Moon shouldn’t be too hard, and no large-scale load-bearing construction is necessary for it to work. The best part is that, in theory, the metal dipoles are serviceable and repairable, giving FarView a lengthy lifespan.

To begin operations, however, some other infrastructure will probably be required first. The team plans to build solar panels and batteries from regolith as well, providing power sources for the telescope. They hope ISRU techniques like these will be tested and proven in conjunction with the Artemis program in the coming years.

Finally, for FarView to succeed, some consideration will have to be given to communications. When China landed their Chang’e 4 lander on the far side of the Moon in 2019, they first had to put a communications satellite (Queqiao) at the Earth-Moon L2 Lagrange point, to allow the lander to talk to Earth. NASA has no such satellite available yet – and cooperation with China in space has been politically difficult in recent years. A Lunar far side observatory is going to require some innovation: either in engineering, or in diplomacy.

Are Lunar Observatories the Future of Astronomy?

With new mega-constellations like Starlink coming online in the next few decades, Earth-based astronomy is becoming more and more challenging. These low-flying satellite swarms create bright streaks of light which pollute telescope imagery. Lunar observatories might seem like a promising alternative to sidestep this problem. But the fact is that for most types of telescopes, you just can’t beat the cost and convenience of building them on Earth, even if Starlink gets in their way occasionally. As such, it seems likely that Lunar observatories like FarView will only supplement Earth-based observatories, not replace them, at least not anytime soon. Not even with ISRU.

Streaks across Earth-based telescope imagery, caused by an early batch of Starlink satellites in November 2019. Image Credit: NSF’s National Optical-Infrared Astronomy Research Laboratory/CTIO/AURA/DELVE/Clara Martínez-Vázquez and Cliff Johnson.

FarView is exciting not because it solves the Starlink problem (which mostly affects optical telescopes anyways), but rather because FarView offers a unique opportunity for low-frequency radio astronomy, something not viable on Earth due to all of the radio noise we create. With FarView, we could learn things about the cosmic dark ages that just aren’t possible with Earth-based infrastructure. Its scientific value is huge. Just don’t count on it to act as a substitute for mega-constellation regulations, or streak-reducing brightness mitigation techniques. We’re still going to need those to ensure Earth-based astronomy can coexist with mega-constellations, because neither of them are going anywhere any time soon.

New ground-based telescopes like the Vera Rubin Observatory and the Extremely Large Telescope are going to do amazing things in the next decade. If and when FarView joins them, it might just ring in a new golden age of astronomy, with Earth, space, and Moon telescopes alike working together to understand our place in the Universe. It’s a goal worth pursuing, and with a little cooperation and ingenuity, it just might come sooner than we think.

Learn More:

Let’s block ads! (Why?)

728x90x4

Source link

Continue Reading

News

Here’s how Helene and other storms dumped a whopping 40 trillion gallons of rain on the South

Published

 on

 

More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.

That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.

“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”

The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.

Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.

Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.

Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.

Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.

Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.

“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”

The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.

North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.

Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”

Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.

Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.

For Dello, the “fingerprints of climate change” were clear.

“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”

___

Follow AP’s climate coverage at https://apnews.com/hub/climate

___

Follow Seth Borenstein on Twitter at @borenbears

___

Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.

Source link

Continue Reading

Science

‘Big Sam’: Paleontologists unearth giant skull of Pachyrhinosaurus in Alberta

Published

 on

 

It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.

On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.

They call it “Big Sam.”

The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.

It didn’t die alone.

“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.

She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”

“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.

The head alone, she said, is about the size of a baby elephant.

The discovery was a long time coming.

The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.

“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.

When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”

“It contains about 100 to 300 bones per square metre,” she said.

Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.

About a year ago, they found the second adult: Big Sam.

Bamforth said both dinosaurs are believed to have been the elders in the herd.

“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.

“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”

The genders of the two adults are unknown.

Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.

The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.

She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.

“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.

“It’s pretty exciting.”

This report by The Canadian Press was first published Sept. 25, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending