Connect with us

Science

NASA Priority Artemis Science on Moon To Investigate Mysterious Gruithuisen Domes – SciTechDaily

Published

 on


NASA is planning to send a lander and rover to the beautiful Gruithuisen Domes, as seen in this controlled mosaic, and LROC images will help guide the way. The domes are located at 36.3° N, 319.8° E. Image 55 km (34 miles) wide, north is up. Credit: NASA/GSFC/Arizona State University

<span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

NASA
Established in 1958, the National Aeronautics and Space Administration (NASA) is an independent agency of the United States Federal Government that succeeded the National Advisory Committee for Aeronautics (NACA). It is responsible for the civilian space program, as well as aeronautics and aerospace research. It's vision is &quot;To discover and expand knowledge for the benefit of humanity.&quot;

” data-gt-translate-attributes=”["attribute":"data-cmtooltip", "format":"html"]”>NASA has major plans for moon exploration under the Artemis Program. While one of the chief goals is to send astronauts to establish the first long-term presence on the Moon and learn what is necessary to send the first astronauts to <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

Mars
Mars is the second smallest planet in our solar system and the fourth planet from the sun. Iron oxide is prevalent in Mars' surface resulting in its reddish color and its nickname &quot;The Red Planet.&quot; Mars' name comes from the Roman god of war.

” data-gt-translate-attributes=”["attribute":"data-cmtooltip", "format":"html"]”>Mars, there are also many scientific investigations on the agenda.

In fact, that list is growing, as NASA just selected two new instruments for priority Artemis science on the moon. One is called Lunar Vulkan Imaging and Spectroscopy Explorer (Lunar-VISE) and its goal is to explore the mysterious Gruithuisen Domes. What makes these geological features so puzzling to scientists is that they appear to have been formed by a magma rich in silica, similar in composition to granite.

How did these silicic magmas form on the moon, when silicic volcanoes on Earth typically form in the presence of both water and plate tectonics?

Adding to the growing list of commercial deliveries slated to explore more of the Moon than ever before under Artemis, NASA has selected two new science instrument suites, including one that will study the mysterious Gruithuisen Domes for the first time.

These payload suites mark the second selection through the agency’s Payloads and Research Investigations on the Surface of the Moon (PRISM) call for proposals. Both payloads will be delivered to the lunar surface on future flights through NASA’s Commercial Lunar Payload Services (CLPS) initiative, which is one part of the agency’s larger lunar exploration architecture planned for this decade.

“The two selected studies will address important scientific questions related to the Moon,” said Joel Kearns, deputy associate administrator for exploration in NASA’s Science Mission Directorate. “The first will study geologic processes of early planetary bodies that are preserved on the Moon, by investigating a rare form of lunar volcanism. The second will study the effects of the Moon’s low gravity and radiation environment on yeast, a model organism used to understand <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

DNA
DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).

” data-gt-translate-attributes=”["attribute":"data-cmtooltip", "format":"html"]”>DNA damage response and repair.”

NASA Gruithuisen Domes Moon Labeled

A labeled version of the scene above. The Gamma and Delta domes are separated by a relatively flat basaltic plain. Gruithuisen Domes controlled mosaic created from NAC images M1096764863, M1096743429, M1096757719, M1096750574. Credit: NASA/GSFC/Arizona State University

The Lunar Vulkan Imaging and Spectroscopy Explorer (Lunar-VISE) investigation consists of a suite of five instruments, two of which will be mounted on a stationary lander and three mounted on a mobile rover to be provided as a service by the CLPS vendor.

Over the course of 10 Earth days (one lunar day), Lunar-VISE will explore the summit of one of the Gruithuisen Domes. These domes are suspected to have been formed by a sticky magma rich in silica, similar in composition to granite. On Earth, formations like these need oceans of liquid water and plate tectonics to form, but without these key ingredients on the Moon, lunar scientists have been left to wonder how these domes formed and evolved over time.

By analyzing the lunar regolith at the top of one of these domes, the data collected and returned by Lunar-VISE’s instruments will help scientists answer fundamental open questions regarding how these formations came to be. The data also will help inform future robotic and human missions to the Moon. Dr. Kerri Donaldson Hanna of the University of Central Florida will lead this payload suite.

The second selected investigation, the Lunar Explorer Instrument for space biology Applications (LEIA) science suite, is a small CubeSat-based device. LEIA will provide biological research on the Moon – which cannot be simulated or replicated with high fidelity on the Earth or International Space Station – by delivering the yeast Saccharomyces cerevisiae to the lunar surface and studying its response to radiation and lunar gravity. S. cerevisiae is an important model of human biology, especially in the areas of genetics, cellular and molecular replication and division processes, and DNA damage response to environmental factors such as radiation. The data returned by LEIA, in conjunction with previously existing data from other biological studies, could help scientists answer a decades-old question of how partial gravity and actual deep space radiation in combination influence biological processes. Dr. Andrew Settles of NASA’s Ames Research Center in Silicon Valley, California will lead the LEIA payload suite.

With these selections in place, NASA will work with the CLPS office at the agency’s Johnson Space Center in Houston to issue task orders to deliver these payload suites to the Moon in the 2026 timeframe.

For these payload suites, the agency also has selected two project scientists to coordinate science activities for the selected instrument suites, including working with the payloads on landing site selection, developing concepts of operations, and archiving science data acquired during surface operations. Dr. John Karcz of NASA Ames Research Center in California will coordinate the Lunar-VISE investigation suite for delivery to the Gruithuisen Domes, and Dr. Cindy Young of NASA’s Langley Research Center in Hampton, Virginia, will coordinate the LEIA investigation suite for delivery.

CLPS is a key part of NASA’s Artemis lunar exploration plans. The science and technology payloads sent to the Moon’s surface will help lay the foundation for human missions on and around the Moon. The agency has made seven task order awards to CLPS providers for lunar deliveries between in the early 2020s with more delivery awards expected through 2028.

Adblock test (Why?)



Source link

Continue Reading

Science

Rocket Lab’s CAPSTONE mission to the moon is key to establishing a lunar space station – TechCrunch

Published

 on


It may look like Rocket Lab is just launching a microwave-sized hunk of metal to the moon — but it’s crucial for our future in space

“Going to the moon is no joke.” So said Rocket Lab CEO Peter Beck, just days before the planned launch of CAPSTONE, a watershed mission for both NASA and the private space industry.

The mission is important, though you might not assume so based on the stats of the CAPSTONE CubeSat on its own: It’s about the size of a microwave oven and weighs in at just 55 pounds. But the end goal of the spacecraft’s roughly six-month stint in lunar orbit is to chart a favorable trajectory for a crewed station that will orbit the moon. Once established, that platform, dubbed Gateway, could unlock a whole new chapter in human space exploration.

Consider CAPSTONE (which stands for Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment) the first in-space step in NASA’s Artemis program, an ambitious plan to return humans to the moon by the middle of this decade. The Gateway platform could be used as a way station for lunar landers, a resupply junction for astronauts exploring the moon — or even a transfer point for missions to Mars and beyond.

Image Credits: NASA

The mission isn’t just a big deal for the Artemis program and public space exploration: Notably, it’s the result of a patchwork of collaboration between private industry and the space agency. The list of partners on NASA’s website for the mission includes:

And, of course, Rocket Lab for the launch services.

CAPSTONE is launching aboard a Rocket Lab Electron rocket from the company’s site on New Zealand’s remote Māhia Peninsula. “This is the highest mass and the highest performance Electron has ever had to fly by quite some margin,” Beck said. “The vehicle is absolutely stretched to its limits with respect to performance.”

In addition to actually launching the mission, Rocket Lab developed a special variant of its Photon spacecraft for this endeavor, which it’s calling the Lunar Photon. That spacecraft will conduct a series of orbits over a period of around six to eight days, increasing the velocity and apogee of the orbit over time. Then, Photon will perform the final burn, called the trans-lunar injection, which will set it on its course to the moon. Around 20 minutes after the injection, Photon and CAPSTONE will separate and the CubeSat alone will conduct the remaining maneuvers to reach its target orbit around the moon.

“The moon is a long way away,” Beck said, referring to the complexities of Photon’s maneuvers. “You’re traveling at huge velocities. So it only takes a smallest fraction of an angle error or a velocity error, and you just shoot way past where you need to be.”

“It’s like firing a bullet millions of kilometers, and it’s got to be exactly in the right place.”

An unusual orbit

The exact orbit that CAPSTONE will be exploring is called a near-rectilinear halo orbit (NRHO). That orbit, in the shape of a necklace, will bring CAPSTONE as close as 1,000 miles to the moon’s surface and as far away as 40,000 miles. Although the shape is odd, it’s a very stable orbit, which means greater efficiency and less use of propellant. NRHO was up against competing orbits, including low lunar orbit and distant retrograde orbit, as the ideal trajectory for Gateway; but as NASA explains, NRHO is a “best of both worlds” option that’ll provide astronauts with easy access to the lunar surface, a continuous line of sight to (and communication with) Earth and access to deep space.

But testing the NRHO orbit is not the only point of the mission. The CubeSat will also help NASA understand navigation, or how to generate an accurate estimation of Gateway’s trajectory, and station-keeping.

“Because the NRHO is marginally stable, Gateway and CAPSTONE will both require a gentle ‘nudge’ about once a week to stay in orbit,” Ethan Kayser, CAPSTONE mission design lead at Advanced Space, explained in a Reddit post. “CAPSTONE will be using the same strategy to design and execute these stationkeeping maneuvers, which occur once each revolution.” The eight propulsion thrusters built by Stella Exploration will be key to conducting these maneuvers.

CAPSTONE will arrive at its lunar orbit on November 13. After a roughly six-month orbital mission, NASA plans to crash the spacecraft into the moon at the end of its life. The launch is set to take place during an instantaneous launch window at 5:55 AM EDT on Tuesday, June 28, so be sure to follow TechCrunch for live coverage and reporting on the outocome of the mission launch.

Adblock test (Why?)



Source link

Continue Reading

Science

See A Jaw-Dropping Crescent Moon, 50 Meteors And Hour And Our Billion-Star Milky Way: What You Can See In The Night Sky This Week – Forbes

Published

 on


Each Monday I pick out the northern hemisphere’s celestial highlights (mid-northern latitudes) for the week ahead, but be sure to check my main feed for more in-depth articles on stargazing, astronomy, eclipses and more.

What To See In The Night Sky This Week: June 27-July 3, 2022

It’s not easy going stargazing in summer at this time of year in the northern hemisphere. The nights are just so short. The best reason to stay up late and go somewhere dark is the sight of the spiral arms of our Milky Way galaxy arcing across the night sky. Look to the southeast and south for that this month—and this week in particular, which will be largely moonless.

When our satellite does emerge from its New Moon conjunction with the Sun expect lush views of a slender crescent Moon. Who said summer was no good for stargazing?

Monday, June 27, 2022: Boötids meteor shower and a crescent Moon meets Mercury

The June Boötids meteor shower—occasionally called the June Draconids or Boötid-Draconids meteor shower—runs annually between June 22 and July 2, but peaks in the early hours of June 27, 2020.

If you are out stargazing late tonight keep an eye out for the 50 or so “shooting stars” per hour expected. The shower’s radiant point—the apparent source of the shooting stars—is the constellation of Boötes.

If you’re still up before dawn you might just catch the planet Mercury just 3.9º from an incredibly slender 2.6% crescent Moon, but be very careful if you use binoculars to help you because the rising Sun is NOT something you want in your field of view.

Tuesday, June 30, 2022: A super-slim crescent Moon and ‘Asteroid Day’

Today is Asteroid Day. With any luck there won’t be anything to see hurtling towards (or even smashing into) our planet, but it’s a good chance to consider the threat posed to Earth of incoming space rocks. What’s really going to change everything is the Vera Rubin Observatory, which from 2022 will deploy a wide-angle camera to map the night sky in real-time—and identify many thousands of hitherto unfound asteroids.

Friday, July 1, 2022: ‘Earthshine’ on a crescent Moon

You should get a much clearer view of a crescent Moon today. Now 8% illuminated, in a clear sky it will be a stunning sight, not least because you’ll be able to see sunlight being reflected onto the Moon by the Earth as “Earthshine” or “planet-shine.” It’s a subtle sight, but once seen cannot be unseen; look at the Moon’s darkened limb with your eyes, or better still, with a pair of binoculars, to appreciate this fine sight.

As a bonus it will be just 3.5° from the Beehive Cluster, though you’ll need a pair of binoculars to see its 30 or so easily visible stars.

Saturday, July 2, 2022: ‘Earthshine’ on a crescent Moon and Regulus

Tonight just after sunset look west for a 14% crescent Moon, once again displaying Earthshine. The stars around it will be those of the “sickle” in the constellation of Leo. The brightest, about 5º left of the Moon, will be Leo’s brightest star, Regulus. It’s one of the brightest stars in the night sky and about 78 light-years distant.

Object of the week: noctilucent clouds

This time of year the twilight seems to last forever at northerly latitudes so consider looking for a “ghostly” display of noctilucent or “night shining” clouds (NLCs). At their best in northern twilight skies during June and July (at latitudes between 50° and 70° north and south of the equator), NLCs are very delicate high altitude clouds of icy dust that form about 50 miles/80 kilometres up. Because the Sun is never too far below the horizon at these latitudes they get subtly lit up for a short time. They’re best seen with the naked eye or a pair of binoculars.

Wishing you clear skies and wide eyes.

Adblock test (Why?)



Source link

Continue Reading

Science

Astronomers Found a Crater From The Mystery Rocket That Smashed Into The Moon – ScienceAlert

Published

 on


The Lunar Reconnaissance Orbiter (LRO) – NASA’s eye-in-the-sky in orbit around the Moon – has found the crash site of the mystery rocket booster that slammed into the far side of the Moon back on 4 March 2022.

The LRO images, taken May 25th, revealed not just a single crater, but a double crater formed by the rocket’s impact, posing a new mystery for astronomers to unravel.

Why a double crater? While somewhat unusual – none of the Apollo S-IVBs that hit the Moon created double craters – they’re not impossible to create, especially if an object hits at a low angle. But that doesn’t seem to be the case here.

Astronomer Bill Gray, who first discovered the object and predicted its lunar demise back in January, explains that the booster “came in at about 15 degrees from vertical. So that’s not the explanation for this one.”

The impact site consists of an 18-meter-wide eastern crater superimposed on a 16-meter-wide western crater. Mark Robinson, Principal Investigator of the LRO Camera team, proposes that this double crater formation might result from an object with distinct, large masses at each end.

Before (2022-02-28) and after image (2022-05-21) of the Moon. (NASA/GSFC/Arizona State University)

“Typically a spent rocket has mass concentrated at the motor end; the rest of the rocket stage mainly consists of an empty fuel tank. Since the origin of the rocket body remains uncertain, the double nature of the crater may help to indicate its identity,” he said.

So what is it?

It’s a long story. The unidentified rocket first came to astronomers’ attention earlier this year when it was identified as a SpaceX upper stage, which had launched NASA’s Deep Space Climate Observatory (DSCOVR) to the Sun-Earth L1 Lagrange Point in 2015.

Gray, who designs software that tracks space debris, was alerted to the object when his software pinged an error. He told The Washington Post on January 26 that “my software complained because it couldn’t project the orbit past March 4, and it couldn’t do it because the rocket had hit the Moon.”

Gray spread the word, and the story made the rounds in late January – but a few weeks later, he received an email from Jon Giorgini at the Jet Propulsion Lab (JPL).

Giorgini pointed out that DSCOVR’s trajectory shouldn’t have taken the booster anywhere near the Moon. In an effort to reconcile the conflicting trajectories, Gray began to dig back into his data, where he discovered that he had misidentified the DSCOVR booster way back in 2015.

SpaceX wasn’t the culprit after all. But there was definitely still an object hurtling towards the Moon. So what was it?

A bit of detective work led Gray to determine it was actually the upper stage of China’s Chang’e 5-T1 mission, a 2014 technology demonstration mission that lay the groundwork for Chang’e 5, which successfully returned a lunar sample to Earth in 2020 (incidentally, China recently announced it would follow up this sample return mission with a more ambitious Mars sample return project later this decade). 

Jonathan McDowell offered some corroborating evidence that seemed to bolster this new theory for the object’s identity.

The mystery was solved.

Except, days later, China’s Foreign Minister claimed it was not their booster: it had deorbited and crashed into the ocean shortly after launch.

As it stands now, Gray remains convinced it was the Change 5-T1 booster that hit the Moon, proposing that the Foreign Minister made an honest mistake, confusing Chang’e 5-T1 with the similarly named Chang’e 5 (whose booster did indeed sink into the ocean).

As for the new double crater on the Moon, the fact that the LRO team was able to find the impact site so quickly is an impressive feat in itself. It was discovered mere months after impact, with a little help from Gray and JPL, who each independently narrowed the search area down to a few dozen kilometers.

For comparison, The Apollo 16 S-IVB impact site took more than six years of careful searching to find.

Bill Gray’s account of the booster identification saga is here, as well as his take on the double crater impact. The LRO images can be found here.

This article was originally published by Universe Today. Read the original article.

Adblock test (Why?)



Source link

Continue Reading

Trending