adplus-dvertising
Connect with us

Science

NASA's James Webb Space Telescope's first target is a sun-like star in the Big Dipper – Daily Mail

Published

 on


NASA’s James Webb Space Telescope’s first target is a sun-like star in the Big Dipper constellation about 260 light years from the Earth – but it is just to calibrate the mirrors

  • The James Webb Space Telescope will study distant stars and survey exoplanets 
  • It launched on Christmas Day last year and arrived at its final orbit last week
  • When Webb is fully operational, it will send 28.6 GB of data to Earth twice daily 
  • The first target for Webb is a star 260 light years away that is similar to the sun
  • This won’t be the first science target, as it will be used to calibrate the mirrors 

 The first target of the NASA James Webb Space Telescope is a sun-like star in the Great Bear constellation, but it is just to check the mirrors are properly aligned. 

The $10 billion telescope is months from being ready to begin operations, despite arriving at its final orbit on January 24, as it has to cool down and undergo weeks of calibration work, to ensure the 18 segments of the main mirror ‘work as one’.

After reaching its orbit, at the second Lagrange point (L2), an area of balance between gravitational forces of the Earth and the sun, NASA revealed its first target.

‘Star light, star bright…the first star Webb will see is HD 84406, a Sun-like star about 260 light years away,’ the space agency wrote on the @NASAWebb twitter account.

‘While it will be too bright for Webb to study once the telescope is in focus, it’s a perfect target for Webb to gather engineering data & start mirror alignment.’

When asked whether the images from this alignment process would be released to the public, a European Space Agency (ESA) official told DailyMail.com: ‘All calibration data will be made public at the end of commissioning.’ 

To align James Webb’s mirrors, NASA will be pointing the telescope at HD 84406 — a sun-like, type G star that lies some 260 light-years-away in the constellation of Ursa Major. Engineers will take 18 separate, out-of-focus images of HD 84406 using each of the mirrors, from which a computer will determine exactly how each must be oriented to bring the telescope into focus

Among the telescope's goals will be surveying potentially habitable exoplanets and some of the most distant and oldest objects in the observable universe

Among the telescope’s goals will be surveying potentially habitable exoplanets and some of the most distant and oldest objects in the observable universe

The space telescope is a joint project of NASA, ESA and the Canadian Space Agency, with ESA funding its launch into space on Christmas Day, from French Guiana. 

The 7th magnitude star, outside the level visible from Earth with the naked eye, but visible with a good pair of binoculars, sits near the Big Dipper constellation.

It is unclear what quality any images or data will be from these observations, as they are purely to allow the engineering team to gather data to start mirror alignments.

‘The team chose a bright star, magnitude 6.7 at a distance of about 260 light-years, as measured by Gaia,’ a NASA spokesperson explained. 

The announcement of the first calibration target came as the telescope arrived in its final orbit, and NASA confirmed its large antenna had been turned on

The announcement of the first calibration target came as the telescope arrived in its final orbit, and NASA confirmed its large antenna had been turned on 

James Webb (depicted) — the most complex space telescope ever built — was launched in late December last year and is intended as the successor to the Hubble observatory

James Webb (depicted) — the most complex space telescope ever built — was launched in late December last year and is intended as the successor to the Hubble observatory

FACTS AND FIGURES: NASA’s $10 BILLION JAMES WEBB SPACE TELESCOPE

Operator: NASA & ESA 

Launched: December 25, 2021

Full operation begins: Summer 2022

Location: Sun–Earth L2 point 

Orbit type: Halo orbit 

Mission duration: 20 years (expected)

Telescope diameter: 21 feet (6.5 m)

Focal length: 431 feet (131.4 m)

Wavelengths: 0.6–28.3 μm

<!—->

‘The star is a sun-like G star in the Ursa Major constellation, which can be seen by Webb at this time of the year. 

‘This is just the first step; HD 84406 will be too bright to study with Webb once the telescope starts to come into focus. But for now, it is the perfect target to begin our search for photons, a search that will lead us to the distant universe.’

Engineers will take 18 separate, out-of-focus images of HD 84406 using each of the mirrors, from which a computer will determine exactly how each must be oriented to bring the telescope into focus.

Each mirror’s direction can be adjusted in the very tiniest of increments — each equal to a ten-thousandth of the width of a human hair.

According to NASA, the initial alignment process is expected to take several months to complete. When the telescope is up and running, the mirrors will also need to be checked and, if necessary, realigned every few days. 

Astrophysicist Eric Mamajek, from NASA JPL, said on Twitter that the star was slightly cooler, but much larger and more luminous than the sun.

It has a surface temperature of about 5,000 K, he said, which is 8,540 degrees Fahrenheit, compared to the sun’s 5,778 K, or 9,940 F.

It is about 4.4 times the size of the sun and 11 times more luminous, and may actually be part of a binary pair, according to data from the ESA Gaia telescope.

If it is a binary pairing then the smaller star is likely a red dwarf about half the size of the Sun, with the main about 3 billion years old – slightly younger than the sun. 

A spokesperson for ESA told DailyMail.com that all calibration images would be released at the end of the process, but couldn’t say exactly when.

It is expected this will be sometime in June, after the first observation image is released, or alongside that first observation image.

The first target star sits in the constellation of Ursa Major, and is a sun-like star called HD 84406 - somewhere in the area highlighted by the red circle

The first target star sits in the constellation of Ursa Major, and is a sun-like star called HD 84406 – somewhere in the area highlighted by the red circle

'Star light, star bright…the first star Webb will see is HD 84406, a Sun-like star about 260 light years away,' the space agency wrote on the @NASAWebb twitter account

‘Star light, star bright…the first star Webb will see is HD 84406, a Sun-like star about 260 light years away,’ the space agency wrote on the @NASAWebb twitter account

HD 84406: THE FIRST STAR TO BE OBSERVED BY THE WEBB TELESCOPE 

HD 84406 is a sun-like star near the Big Dipper about 260 light years away.

It will be too bright to study with Webb once the telescope starts to come into focus, but is a good calibration target. 

It has a surface temperature of about 5,000 K, which is 8,540 degrees Fahrenheit, compared to the sun’s 5,778 K, or 9,940 F.

It is about 4.4 times the size of the sun and 11 times more luminous, and may actually be part of a binary pair, according to data from the ESA Gaia telescope.

If it is a binary pairing then the smaller star is likely a red dwarf about half the size of the Sun, with the main about 3 billion years old – slightly younger than the sun.  

<!—->

Some experts have speculated that the delay in releasing the calibration images could be due to the risk of misinterpretation of raw data, and felt it was important for the team of experts employed by the Webb consortium to view them first. 

Once it completes the first round of calibrations, using the isolated bright star, NASA will move on to other observations, to test different aspects of the telescope.

The first ‘official’ scientific observation will be in May, with the first image released a month or so later after analysis work – although that target hasn’t been revealed.

There is speculation it will be something already imaged by the Hubble Space Telescope, to provide a direct comparison and example of the benefit of Webb.

Compared to its 30-year-old predecessor, Webb has the ability to see objects nine times fainter than Hubble could – allowing it to peer further back in time.

It isn’t a direct comparison though, as Hubble was more of a visible light observatory, whereas Webb looks in the infrared.

The announcement of the first calibration target came as the telescope arrived in its final orbit, and NASA confirmed its large antenna had been turned on.

This high-gain antenna allows it to send images and data back to Earth, and was a step required before the calibration could begin.

Among the telescope’s goals will be surveying potentially habitable exoplanets and some of the most distant and oldest objects in the observable universe.

Louis-Philippe Coulombe, from the University of Montreal, said that Webb will make it possible to get unprecedentedly precise observations of alien worlds. 

This will allow scientists to understand the nature of their atmospheres, and learn more about how atmospheres work in general. 

This all requires Webb to send data back to Earth, so astronomers can look at the observations and understand exactly what has been seen by the telescope. 

Until now, communications with the telescope had all been via its medium-gain antenna, using the microwave ‘S-band’ of frequencies between 2–4 GHz.

The space telescope is a joint project of NASA, ESA and the Canadian Space Agency, with ESA funding its launch into space on Christmas Day, from French Guiana

The space telescope is a joint project of NASA, ESA and the Canadian Space Agency, with ESA funding its launch into space on Christmas Day, from French Guiana 

The high-gain antenna, which operates instead in the ‘Ka-band’ (26.5–40 GHz), will allow a higher downlink rate via NASA’s Deep Space Network, the agency said.

This network sports three ground stations in California, Canberra and Madrid, meaning that one location will also be visible to Webb as the Earth turns.

The Ka-band has three data transfer speeds to select from, with the default being the highest, which operates at 3.5 megabytes per second. 

For comparison, the average download speed on a 4G mobile phone connection is around 1–1.25 megabytes per second.

The two slower speeds, meanwhile, can be used to compensate for bad weather at the ground station that might produce interference.

When the telescope begins observations in mid-summer this year the high-gain antenna will transfer at least 28.6 Gigabytes of science data to Earth twice daily.

JAMES WEBB SPACE TELESCOPE: THE NEXT BIG ORBITAL OBSERVATORY DEPLOYED TO SEARCH FOR ALIEN LIFE 

Primarily an infrared telescope, it will have a wider spectrum view than Hubble and operate further out from the Earth, in a solar orbit, rather than an Earth orbit. 

Research by Ohio State University claims that within five years of it coming online, James Webb will have found signs of alien life on a distant world.

Graduate student Caprice Phillips calculated that it could feasibly detect ammonia created by living creatures around gas dwarf planets after just a few orbits. 

The James Webb telescope has been described as a ‘time machine’ that could help unravel the secrets of our universe.

The telescope will be used to look back to the first galaxies born in the early universe more than 13.5 billion years ago.

It will also observe the sources of stars, exoplanets, and even the moons and planets of our solar system.

The James Webb Telescope and most of its instruments have an operating temperature of roughly 40 Kelvin.

This is about minus 387 Fahrenheit (minus 233 Celsius). 

Officials from the space agencies responsible for the telescope say the cost may exceed the $8 billion (£5.6 billion) program cap set by Congress.

NASA has already poured $7 billion (£5 billion) into the telescope since it was first proposed as a replacement for the long-running Hubble space telescope.

When it is launched in 2021, it will be the world’s biggest and most powerful telescope, capable of peering back 200 million years after the Big Bang.

James Webb is designed to last for five years but NASA hopes it will operate for a decade or more, although due to its distance from Earth it can’t be easily repaired.

It is 66 ft by 46 ft and will operate at the Sun-Earth Lagrange point about 930,000 miles from the Earth – almost four times further out than the moon. 

The telescope is set to launch on a European workhorse Ariane-5 rocket at the end of October 2021, with the first observations expected in 2022.

<!—->

Adblock test (Why?)

728x90x4

Source link

Continue Reading

News

Here’s how Helene and other storms dumped a whopping 40 trillion gallons of rain on the South

Published

 on

 

More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.

That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.

“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”

The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.

Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.

Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.

Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.

Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.

Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.

“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”

The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.

North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.

Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”

Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.

Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.

For Dello, the “fingerprints of climate change” were clear.

“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”

___

Follow AP’s climate coverage at https://apnews.com/hub/climate

___

Follow Seth Borenstein on Twitter at @borenbears

___

Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.

Source link

Continue Reading

Science

‘Big Sam’: Paleontologists unearth giant skull of Pachyrhinosaurus in Alberta

Published

 on

 

It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.

On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.

They call it “Big Sam.”

The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.

It didn’t die alone.

“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.

She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”

“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.

The head alone, she said, is about the size of a baby elephant.

The discovery was a long time coming.

The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.

“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.

When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”

“It contains about 100 to 300 bones per square metre,” she said.

Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.

About a year ago, they found the second adult: Big Sam.

Bamforth said both dinosaurs are believed to have been the elders in the herd.

“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.

“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”

The genders of the two adults are unknown.

Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.

The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.

She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.

“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.

“It’s pretty exciting.”

This report by The Canadian Press was first published Sept. 25, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending