adplus-dvertising
Connect with us

Science

NASA’s Lucy Launches on 12-Year Mission to Jupiter’s Trojan Asteroids – The New York Times

Published

 on


The elaborate journey of the robotic spacecraft will offer close encounters with some of the solar system’s least understood objects.

The spacecraft is designed to study clusters of asteroids along Jupiter’s orbital path, known as the Trojan swarms, as it seeks to answer questions about the origins of the solar system and how life might have emerged on Earth.Ben Smegelsky/NASA

NASA embarked on a 12-year mission to study a group of asteroids on Saturday with the launch of Lucy, a robotic explorer that will meander through the unexplored caverns of deep space to find new clues about the creation of our solar system.

The 5:34 a.m. Eastern time liftoff from Kennedy Space Center in Florida atop an Atlas 5 rocket from United Launch Alliance was the first step of Lucy’s four-billion mile path into the orbital neighborhood of Jupiter. There, two swarms of asteroids known as the Trojans have hid for billions of years, leftover debris from the solar system’s early formation.

The spacecraft launched before dawn, setting off toward the orbit that will begin its elaborate trajectory. Lucy separated from the rocket’s second stage booster roughly an hour after liftoff and about a half an hour later unfurled two circular solar panels that will power the spacecraft throughout its journey.

Orbiting the sun on each side of Jupiter, the two clouds of dark asteroids have only been scrutinized by scientists from afar. Some 10,000 have been identified of the roughly one million that are estimated to exist. Lucy will be the first spacecraft to dive directly into the clusters to get close-up views of seven unique Trojan asteroids, plus one tiny asteroid in the solar system’s main asteroid belt.

“The last 24 hours has just been a roller coaster of excitement and buildup and everything was a success,” Hal Levison, Lucy’s principal investigator, said on a NASA livestream after launch. “We have one chance really to do this, the planets are literally aligning in order to make this trajectory happen.”

He and the mission’s other scientists hope that the sedan-size spacecraft will uncover pieces of evidence about the migration of planets to their current orbits.

The Lucy spacecraft’s mission will last 12 years and complete encounters with numerous asteroids in the Trojan swarms that share Jupiter’s orbital path.
John Raoux/Associated Press

The Lucy probe, named after the fossilized skeleton of an early hominid ancestor that transformed our understanding of human evolution, will use a suite of scientific instruments to analyze the Trojan asteroids — celestial fossils that the mission’s scientists hope will transform human knowledge about the formation of the solar system.

Managed by the Southwest Research Institute, with a spacecraft built for NASA by Lockheed Martin, the total cost of the mission is $981 million. The spacecraft is roughly the size of a small car and weighs about 3,300 pounds when filled with fuel.

Its scientific instruments include L’TES, or the Lucy Thermal Emission Spectrometer — a telescope designed to scan asteroid surfaces for infrared radiation and measure how quickly or slowly the space rocks’ surfaces heat up and cool down with exposure to the sun’s heat. Built by scientists at Arizona State University, the gadget is essentially an advanced thermometer. Analyzing how quickly the asteroids build up heat gives scientists an idea of how much dust and rocky material is scatted across their surfaces.

Another device is L’LORRI, or the Lucy Long Range Reconnaissance Imager, built by engineers and scientists at the Johns Hopkins Applied Physics Laboratory. This telescope will capture black-and-white images of the asteroids’ surfaces, revealing craters and ridges that have long been shrouded in darkness.

Lucy’s third tool, L’Ralph, has both a color camera and an infrared spectrometer. Each instrument is designed to detect bands of light emitted by ices and minerals scientists expect to be present on the asteroids’ surfaces.

Bill Ingalls/NASA, via Associated Press

Touring the Trojan Asteroids

NASA’s Lucy spacecraft launched this month on a 12-year mission to study the Trojan asteroids, fragments of the early solar system that are now trapped in gravitationally stable areas near Jupiter.




#g-lucy-box ,
#g-lucy-box .g-artboard
margin:0 auto;

#g-lucy-box p
margin:0;

#g-lucy-box .g-aiAbs
position:absolute;

#g-lucy-box .g-aiImg
position:absolute;
top:0;
display:block;
width:100% !important;

#g-lucy-box .g-aiSymbol
position: absolute;
box-sizing: border-box;

#g-lucy-box .g-aiPointText p white-space: nowrap;
#g-lucy-900
position:relative;
overflow:hidden;

#g-lucy-900 p
font-family:nyt-franklin,arial,helvetica,sans-serif;
font-weight:300;
line-height:17px;
filter:alpha(opacity=100);
-ms-filter:progid:DXImageTransform.Microsoft.Alpha(Opacity=100);
opacity:1;
letter-spacing:0em;
font-size:14px;
text-align:left;
color:rgb(0,0,0);
text-transform:none;
padding-bottom:0;
padding-top:0;
mix-blend-mode:normal;
font-style:normal;
height:auto;
position:static;

#g-lucy-900 .g-pstyle0
font-weight:600;
height:17px;
text-align:center;
top:1.1px;
position:relative;

#g-lucy-900 .g-pstyle1
font-style:italic;
height:17px;
text-align:center;
top:1.1px;
position:relative;

#g-lucy-900 .g-pstyle2
height:17px;
text-align:center;
top:1.1px;
position:relative;

#g-lucy-900 .g-pstyle3
font-weight:600;
height:17px;
text-align:right;
top:1.1px;
position:relative;

#g-lucy-900 .g-pstyle4
height:17px;
text-align:right;
top:1.1px;
position:relative;

#g-lucy-900 .g-pstyle5
font-weight:600;
height:17px;
top:1.1px;
position:relative;

#g-lucy-900 .g-pstyle6
height:17px;
top:1.1px;
position:relative;

#g-lucy-900 .g-pstyle7
font-style:italic;
line-height:16px;
height:16px;
letter-spacing:0.1em;
font-size:12px;
text-align:center;
top:1px;
position:relative;

#g-lucy-900 .g-pstyle8
line-height:15px;
height:15px;
font-size:13px;
text-align:center;
top:1px;
position:relative;

#g-lucy-900 .g-pstyle9
line-height:15px;
height:15px;
font-size:13px;
text-align:right;
top:1px;
position:relative;

#g-lucy-900 .g-pstyle10
line-height:15px;
height:15px;
font-size:13px;
top:1px;
position:relative;

#g-lucy-900 .g-pstyle11
font-weight:600;
line-height:15px;
height:15px;
font-size:13px;
text-align:center;
top:1px;
position:relative;

#g-lucy-600
position:relative;
overflow:hidden;

#g-lucy-600 p
font-family:nyt-franklin,arial,helvetica,sans-serif;
font-weight:300;
line-height:16px;
filter:alpha(opacity=100);
-ms-filter:progid:DXImageTransform.Microsoft.Alpha(Opacity=100);
opacity:1;
letter-spacing:0em;
font-size:13px;
text-align:left;
color:rgb(0,0,0);
text-transform:none;
padding-bottom:0;
padding-top:0;
mix-blend-mode:normal;
font-style:normal;
height:auto;
position:static;

#g-lucy-600 .g-pstyle0
font-weight:600;
height:16px;
text-align:center;
top:1px;
position:relative;

#g-lucy-600 .g-pstyle1
font-style:italic;
height:16px;
text-align:center;
top:1px;
position:relative;

#g-lucy-600 .g-pstyle2
height:16px;
text-align:center;
top:1px;
position:relative;

#g-lucy-600 .g-pstyle3
font-weight:600;
height:16px;
top:1px;
position:relative;

#g-lucy-600 .g-pstyle4
height:16px;
top:1px;
position:relative;

#g-lucy-600 .g-pstyle5
font-weight:600;
height:16px;
text-align:right;
top:1px;
position:relative;

#g-lucy-600 .g-pstyle6
height:16px;
text-align:right;
top:1px;
position:relative;

#g-lucy-600 .g-pstyle7
font-style:italic;
line-height:15px;
height:15px;
letter-spacing:0.1em;
font-size:12px;
text-align:center;
top:1px;
position:relative;

#g-lucy-335
position:relative;
overflow:hidden;

#g-lucy-335 p
font-family:nyt-franklin,arial,helvetica,sans-serif;
font-weight:300;
line-height:16px;
filter:alpha(opacity=100);
-ms-filter:progid:DXImageTransform.Microsoft.Alpha(Opacity=100);
opacity:1;
letter-spacing:0em;
font-size:13px;
text-align:left;
color:rgb(0,0,0);
text-transform:none;
padding-bottom:0;
padding-top:0;
mix-blend-mode:normal;
font-style:normal;
height:auto;
position:static;

#g-lucy-335 .g-pstyle0
font-weight:600;
height:16px;
text-align:right;
top:1px;
position:relative;

#g-lucy-335 .g-pstyle1
height:16px;
text-align:right;
top:1px;
position:relative;

#g-lucy-335 .g-pstyle2
font-weight:600;
height:16px;
top:1px;
position:relative;

#g-lucy-335 .g-pstyle3
height:16px;
top:1px;
position:relative;

#g-lucy-335 .g-pstyle4
font-style:italic;
height:16px;
text-align:center;
top:1px;
position:relative;

#g-lucy-335 .g-pstyle5
font-style:italic;
line-height:15px;
height:15px;
letter-spacing:0.1em;
font-size:12px;
text-align:center;
top:1px;
position:relative;

#g-lucy-335 .g-pstyle6
font-style:italic;
height:16px;
top:1px;
position:relative;

#g-lucy-335 .g-pstyle7
font-weight:600;
height:16px;
text-align:center;
top:1px;
position:relative;

#g-lucy-335 .g-pstyle8
height:16px;
text-align:center;
top:1px;
position:relative;

Jupiter

L4 swarm of

Trojan asteroids

“Greek camp”

L5 swarm of

Trojan asteroids

“Trojan camp”

Orus

2028

Leucus

2028

Patroclus,

Menoetius

2033

Lucy’s

orbital path,

from Jupiter’s

perspective

Polymele

2027

Eurybates

2027

Donaldjohanson

Asteroid flyby in 2025

Earth

at launch

Sun

ASTEROID

BELT

1-year loop

around sun

2021–22

L2

Jupiter

at launch

2-year loop

around sun

2022–24

Jupiter

L1

L4

L5

Sun

Sun

L3

From the sun’s perspective, above, Lucy will make a series of loops toward Jupiter’s orbit, while Jupiter orbits the sun once every 12 Earth years.

Trojan asteroids are clustered around two of Jupiter’s five Lagrange points, where the gravity of the sun and the planet are balanced.

Jupiter

L4 swarm of

Trojan asteroids

“Greek camp”

L5 swarm of

Trojan asteroids

“Trojan camp”

Leucus

2028

Lucy’s

orbital path,

from Jupiter’s

perspective

Orus

2028

Polymele

2027

Patroclus,

Menoetius

2033

Eurybates

2027

Donaldjohanson

Flyby in 2025

Earth

at launch

Sun

ASTEROID

BELT

L2

Jupiter

at launch

Jupiter

L1

L4

L5

Sun

Sun

L3

From the sun’s perspective, above, Lucy will make a series of loops toward Jupiter’s orbit, while Jupiter orbits the sun once every 12 Earth years.

Trojan asteroids are clustered around two of Jupiter’s Lagrange points, where the gravity of the sun and the planet are balanced.

Eurybates

Flyby in 2027

Polymele

2027

Orus

2028

Leucus

2028

L4 swarm of

Trojan asteroids

“Greek camp”

Donaldjohanson

Flyby in 2025

Earth

at launch

Jupiter

ASTEROID

BELT

Sun

Lucy’s orbital path,

from Jupiter’s

perspective

L5 swarm of

Trojan asteroids

“Trojan camp”

Patroclus and

Menoetius

2033

L2

Jupiter

at launch

Jupiter

L1

L4

L5

Sun

Sun

L3

From the sun’s perspective, above, Lucy will make a series of loops toward Jupiter’s orbit, while Jupiter orbits the sun once every 12 Earth years.

Trojan asteroids cluster around two of Jupiter’s Lagrange points, where the gravity of the sun and the planet are balanced.


By Jonathan Corum | Sources: NASA; Southwest Research Institute; NASA’s Goddard Space Flight Center Conceptual Image Lab

The spacecraft will spend 12 years hunting down eight asteroids, embarking on an intricate path that uses Earth’s gravity three times to slingshot itself around the sun and through the two swarms of Trojans under Jupiter’s gravitational influence. As it journeys from one side of Jupiter’s orbital path to the other, Lucy will travel roughly four billion miles during its primary mission.

Lucy’s Targets

The Lucy spacecraft will test its sensors on a small asteroid named after Donald Johanson, discoverer of the Lucy skeleton. The spacecraft will then make six flybys of Trojan asteroids, ranging in size from a tiny moon to a large binary asteroid.




#g-trojans-box ,
#g-trojans-box .g-artboard
margin:0 auto;

#g-trojans-box p
margin:0;

#g-trojans-box .g-aiAbs
position:absolute;

#g-trojans-box .g-aiImg
position:absolute;
top:0;
display:block;
width:100% !important;

#g-trojans-box .g-aiSymbol
position: absolute;
box-sizing: border-box;

#g-trojans-box .g-aiPointText p white-space: nowrap;
#g-trojans-900
position:relative;
overflow:hidden;

#g-trojans-900 p
font-family:nyt-franklin,arial,helvetica,sans-serif;
font-weight:300;
font-style:normal;
line-height:17px;
height:auto;
filter:alpha(opacity=100);
-ms-filter:progid:DXImageTransform.Microsoft.Alpha(Opacity=100);
opacity:1;
letter-spacing:0em;
font-size:14px;
text-align:left;
color:rgb(0,0,0);
top:1.1px;
position:static;
text-transform:none;
padding-bottom:0;
padding-top:0;
mix-blend-mode:normal;

#g-trojans-900 .g-pstyle0
font-weight:600;
height:17px;
font-size:15px;
text-align:center;
top:1.2px;
position:relative;

#g-trojans-900 .g-pstyle1
height:17px;
text-align:center;
position:relative;

#g-trojans-900 .g-pstyle2
font-style:italic;
height:17px;
text-align:center;
position:relative;

#g-trojans-900 .g-pstyle3
font-weight:500;
line-height:5px;
height:5px;
letter-spacing:0.125em;
font-size:8px;
text-align:center;
text-transform:uppercase;
top:0.6px;
position:relative;

#g-trojans-600
position:relative;
overflow:hidden;

#g-trojans-600 p
font-family:nyt-franklin,arial,helvetica,sans-serif;
font-weight:300;
font-style:normal;
line-height:17px;
height:auto;
filter:alpha(opacity=100);
-ms-filter:progid:DXImageTransform.Microsoft.Alpha(Opacity=100);
opacity:1;
letter-spacing:0em;
font-size:14px;
text-align:left;
color:rgb(0,0,0);
top:1.1px;
position:static;
text-transform:none;
padding-bottom:0;
padding-top:0;
mix-blend-mode:normal;

#g-trojans-600 .g-pstyle0
font-weight:600;
height:17px;
font-size:15px;
text-align:center;
top:1.2px;
position:relative;

#g-trojans-600 .g-pstyle1
height:17px;
text-align:center;
position:relative;

#g-trojans-600 .g-pstyle2
font-style:italic;
height:17px;
text-align:center;
position:relative;

#g-trojans-600 .g-pstyle3
font-weight:500;
line-height:5px;
height:5px;
letter-spacing:0.125em;
font-size:8px;
text-align:center;
text-transform:uppercase;
top:0.6px;
position:relative;

#g-trojans-335
position:relative;
overflow:hidden;

#g-trojans-335 p
font-family:nyt-franklin,arial,helvetica,sans-serif;
font-weight:300;
font-style:normal;
line-height:17px;
height:auto;
filter:alpha(opacity=100);
-ms-filter:progid:DXImageTransform.Microsoft.Alpha(Opacity=100);
opacity:1;
letter-spacing:0em;
font-size:14px;
text-align:left;
color:rgb(0,0,0);
top:1.1px;
position:static;
text-transform:none;
padding-bottom:0;
padding-top:0;
mix-blend-mode:normal;

#g-trojans-335 .g-pstyle0
font-weight:600;
height:17px;
font-size:15px;
text-align:center;
top:1.2px;
position:relative;

#g-trojans-335 .g-pstyle1
height:17px;
text-align:center;
position:relative;

#g-trojans-335 .g-pstyle2
font-style:italic;
height:17px;
text-align:center;
position:relative;

#g-trojans-335 .g-pstyle3
font-weight:500;
line-height:5px;
height:5px;
letter-spacing:0.125em;
font-size:8px;
text-align:center;
text-transform:uppercase;
top:0.6px;
position:relative;

Donaldjohanson

Flyby in April 2025

Main belt asteroid

Polymele

Sept. 2027

Trojan asteroid

Orus

Nov. 2028

Trojan asteroid

APPROX. 50 MILES

Eurybates

Aug. 2027

Trojan asteroid with

a tiny moon, Queta

Leucus

April 2028

Trojan asteroid

Patroclus

and Menoetius

Flyby in March 2033

Binary Trojan asteroid

Donaldjohanson

Flyby in April 2025

Main belt asteroid

Eurybates

Aug. 2027

Trojan asteroid with

a tiny moon, Queta

Polymele

Sept. 2027

Trojan asteroid

Leucus

April 2028

Trojan asteroid

Orus

Nov. 2028

Trojan asteroid

Patroclus and Menoetius

Flyby in March 2033

Binary Trojan asteroid

APPROX. 50 MILES

Donaldjohanson

Flyby in April 2025

Main belt asteroid

Eurybates

Aug. 2027

Trojan asteroid with

a tiny moon, Queta

Polymele

Sept. 2027

Trojan asteroid

Leucus

April 2028

Trojan asteroid

Orus

Nov. 2028

Trojan asteroid

Patroclus and Menoetius

Flyby in March 2033

Binary Trojan asteroid

APPROX. 50 MILES


By Jonathan Corum | Illustrations are artist’s impressions adapted from NASA’s Goddard Space Flight Center Conceptual Image Lab

The Trojan asteroids are swarms of rocky material left over from the formation of our solar system 4.6 billion years ago. No spacecraft has ever visited the asteroids, which orbit the sun on each side of Jupiter and in the same orbital path, but at a great distance from the giant planet.

Before it gets to the Trojans, it will fly by an asteroid in the main belt between Mars and Jupiter that is named after Donald Johanson, the scientist who discovered the Lucy skeleton. The spacecraft will first visit 52246 Donaldjohanson in April 2025 and will then proceed to its primary destinations.

Lucy will make six flybys of the Trojan asteroids, one of which has a small moon, resulting in seven Trojans visited. The observations should give scientists a diverse set of asteroid material to analyze back on Earth.

The Trojan asteroids have been hidden in darkness and nearly impossible to analyze. Scientists expect them to be an unexplored fount of data to test theoretical models about the solar system’s formation and how the planets ended up in their current orbits around the sun.

Two more asteroid missions will eventually follow Lucy, along with:

  • DART: Launching in November, NASA’s Double Asteroid Redirect Test (DART) mission involves crashing a spacecraft into an asteroid to nudge it off course. The mission tests out a method of planetary defense that could one day come in handy should an asteroid threaten Earth.

  • James Webb Space Telescope: A roughly $10 billion follow-up to NASA’s well-known Hubble telescope, the Webb is scheduled to, at last, launch in December. It will study planets orbiting distant stars and search for light from the first galaxies that formed after the Big Bang.

  • Artemis-1: NASA aims in the months ahead to launch an uncrewed Orion astronaut capsule atop its massive Space Launch System rocket around the moon and back. It’s the first mission under the agency’s Artemis program, which aims to one day send American astronauts back to the moon.

  • Psyche: Next year, NASA is scheduled to send a probe to Psyche, a metallic asteroid in the belt between Mars and Jupiter made of nickel and iron that resembles the core of an early planetary body. Like the asteroids of Lucy’s mission, it could provide clues to the formation of our solar system.

  • Europa Clipper: In 2024, NASA intends to send a spacecraft toward Jupiter to scan the icy moon Europa and determine whether its subsurface ocean could harbor life.

Adblock test (Why?)

728x90x4

Source link

Continue Reading

News

Here’s how Helene and other storms dumped a whopping 40 trillion gallons of rain on the South

Published

 on

 

More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.

That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.

“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”

The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.

Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.

Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.

Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.

Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.

Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.

“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”

The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.

North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.

Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”

Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.

Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.

For Dello, the “fingerprints of climate change” were clear.

“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”

___

Follow AP’s climate coverage at https://apnews.com/hub/climate

___

Follow Seth Borenstein on Twitter at @borenbears

___

Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.

Source link

Continue Reading

Science

‘Big Sam’: Paleontologists unearth giant skull of Pachyrhinosaurus in Alberta

Published

 on

 

It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.

On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.

They call it “Big Sam.”

The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.

It didn’t die alone.

“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.

She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”

“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.

The head alone, she said, is about the size of a baby elephant.

The discovery was a long time coming.

The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.

“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.

When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”

“It contains about 100 to 300 bones per square metre,” she said.

Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.

About a year ago, they found the second adult: Big Sam.

Bamforth said both dinosaurs are believed to have been the elders in the herd.

“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.

“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”

The genders of the two adults are unknown.

Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.

The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.

She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.

“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.

“It’s pretty exciting.”

This report by The Canadian Press was first published Sept. 25, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending