Connect with us

Science

New NASA Partnerships to Mature Commercial Space Technologies, Capabilities – Stockhouse

Published

 on


WASHINGTON , Nov. 9, 2020 /PRNewswire/ — NASA has selected 17 U.S. companies for 20 partnerships to mature industry-developed space technologies for the Moon and beyond. The NASA and industry teams will design a 3D printing system for NASA’s Artemis lunar exploration program, test a simple method for removing dust from planetary solar arrays, mature a first-stage rocket recovery system for a small satellite launch provider, and more.

Various NASA centers will work with the companies, ranging from small businesses and large aerospace companies to a previous NASA challenge winner , to provide expertise and access to the agency’s unique testing facilities. The partnerships aim to accelerate the development of emerging space capabilities.

“Space technology development doesn’t happen in a vacuum,” said Jim Reuter , the associate administrator for NASA’s Space Technology Mission Directorate (STMD), which made the selections and will manage the partnerships. “Whether companies are pursuing space ventures of their own or maturing cutting-edge systems to one day offer a new service to NASA, the agency is dedicated to helping bring new capabilities to market for our mutual benefit.”

NASA made the following selections through the 2020 Announcement of Collaboration Opportunity (ACO). The selected proposals are relevant to technology topic areas outlined in the solicitation, including cryogenic fluid management and propulsion; advanced propulsion; sustainable power; in-situ propellant and consumable production; intelligent/resilient systems and advanced robotics; advanced materials and structures; entry, descent, and landing; and small spacecraft technologies.

The selected companies are:

  • Aerojet Rocketdyne Inc. of Redmond, Washington
  • Ahmic Aerospace LLC of Oakwood, Ohio
  • AI SpaceFactory Inc. of Secaucus, New Jersey
  • Blue Origin LLC of Kent, Washington (two selections)
  • Box Elder Innovations LLC of Corinne, Utah
  • Cornerstone Research Group Inc. of Miamisburg, Ohio
  • Elementum 3D Inc. of Erie, Colorado
  • Gloyer-Taylor Laboratories LLC of Tullahoma, Tennessee
  • IN Space LLC of West Lafayette, Indiana
  • Orbital Sciences Corporation (Northrop Grumman Space Systems Inc.) of Dulles, Virginia
  • pH Matter LLC of Columbus, Ohio
  • Phase Four Inc. of El Segundo, California
  • Rocket Lab USA Inc. of Long Beach, California
  • Sensuron LLC of Austin, Texas
  • Space Exploration Technologies Corp. (SpaceX) of Hawthorne, California
  • Space Systems Loral Inc. (Maxar Technologies) of Palo Alto, California (three selections)
  • Stellar Exploration Inc . of San Luis Obispo, California

The selections will result in unfunded Space Act Agreements between the companies and NASA. The period of performance will be negotiated for each agreement, with an expected duration of between 12 and 24 months. The total estimated value of agency resources to support the agreements is approximately $15.5 million .

A proposal under the advanced materials and structures topic has potential benefits on the Moon, Mars, and even Earth. AI SpaceFactory, an architectural and technology design firm and winner of NASA’s 3D Printed Habitat Challenge , will develop a new material that mimics lunar regolith, or dirt. Working with NASA’s Kennedy Space Center in Florida , the company will 3D print a test structure in a vacuum chamber that mimics environmental conditions on the Moon. The research could inform a 3D printing system for constructing large surface structures from in-situ materials on other worlds. On Earth, a locally sourced, high-performance 3D print material could benefit the construction industry by simplifying supply chains and reducing material waste.

SpaceX will partner with NASA’s Langley Research Center in Hampton, Virginia , to capture imagery and thermal measurements of its Starship vehicle during orbital re-entry over the Pacific Ocean. With the data, the company plans to advance a reusable thermal protection system, which protects the vehicle from aerodynamic heating, for missions returning from low-Earth orbit, the Moon, and Mars.

The Ohio -based small business Ahmic Aerospace will also mature new thermal protection systems by partnering with NASA’s Ames Research Center in California’s Silicon Valley. Ahmic will use Ames’ Arc Jet Complex to test hardware and collect data about how materials behave under ablative conditions.

For more information about NASA’s 2020 ACO selections, visit:

https://go.nasa.gov/35cxYdv

Through ACO, NASA helps reduce the development cost of technologies and accelerate the infusion of emerging commercial capabilities into space missions. These partnerships complement NASA’s Artemis program and help prepare the agency for its future exploration endeavors. With these agreements and NASA’s 2020 Tipping Point partnerships , STMD supports technology development needed to establish a sustainable presence on the Moon and for future crewed missions to Mars.

For more information about NASA space tech public-private partnership opportunities, visit:

https://go.nasa.gov/36NebCx

Cision View original content to download multimedia: http://www.prnewswire.com/news-releases/new-nasa-partnerships-to-mature-commercial-space-technologies-capabilities-301168881.html

SOURCE NASA

Let’s block ads! (Why?)



Source link

Continue Reading

Science

Farrell calls for consideration of city bylaw to stop street harassment in Calgary – Calgary Herald

Published

 on


Article content continued

Some other Canadian cities have rules to deal with street harassment. In London, Ont., you can be fined for using “abusive or insulting language” in a public space.

Street harassment takes many forms, from unwanted sexual comments to whistling to flashing or groping, and it’s based on someone’s perceived gender or sexual identity. It’s a point of focus for gender equity advocates, as an example of how control tactics make people feel unsafe in public spaces.

Sagesse executive director Andrea Silverstone said Monday that street harassment can’t be dismissed as one-off comments or isolated incidents.

“It’s a structured pattern of behaviour that occurs in society that makes certain people feel unsafe,” she said. “Whether they’re women or 2SLGBTQ individuals or visible minorities feeling unsafe on the street.”

Jake Stika, executive director of Next Gen Men, said street harassment is a symptom of how boys absorb the message that being a man is about power and dominance, and they start defining their interactions that way.

Street harassment, he explains, is overwhelmingly perpetuated by men, but men are also key to stopping it.

“It’s not a women’s issue. Women are impacted by it … but what we need to do as guys is take this up as our issue,” he said. “We’re the problem, but we’re also the solution.”

Stika’s organization works to redefine manhood and masculinity with youth and community programs as part of working “upstream” to stop gender-based violence and improve men’s health and relationships.

Let’s block ads! (Why?)



Source link

Continue Reading

Science

AI Solves 50-Year-Old Biology 'Grand Challenge' Decades Before Experts Predicted – ScienceAlert

Published

 on


A long-standing and incredibly complex scientific problem concerning the structure and behaviour of proteins has been effectively solved by a new artificial intelligence (AI) system, scientists report.

DeepMind, the UK-based AI company, has wowed us for years with its parade of ever-advancing neural networks that continually trounce humans at complex games such as chess and Go.

All those incremental advancements were about much more than mastering recreational diversions, however.

In the background, DeepMind’s researchers were seeking to coax their AIs towards solving much more fundamentally important scientific puzzles – such as finding new ways to fight disease by predicting infinitesimal but vitally important aspects of human biology.

Now, with the latest version of their AlphaFold AI engine, they seem to have actually achieved this very ambitious goal – or at least gotten us closer than scientists ever have before.

[embedded content]

For about 50 years, researchers have strived to predict how proteins achieve their three-dimensional structure, and it’s not an easy problem to solve.

The astronomical number of potential configurations is so mind-bogglingly huge, in fact, that researchers postulated it would take longer than the age of the Universe to sample all the possible molecular arrangements.

Nonetheless, if we can solve this puzzle – known as the protein-folding problem – it would constitute a giant breakthrough in scientific capabilities, vastly accelerating research endeavours in things like drug discovery and modelling disease, and also leading to new applications far beyond health.

For that reason, despite the scale of the challenge, for decades researchers have been collaborating to make gains in developing solutions to the protein-folding problem.

A rigorous experiment called CASP (Critical Assessment of protein Structure Prediction) began in the 1990s, challenging scientists to devise systems capable of predicting the esoteric enigmas of protein folding.

[embedded content]

Now, in its third decade, the CASP experiment looks to have produced its most promising solution yet – with DeepMind’s AlphaFold delivering predictions of 3D protein structures with unprecedented accuracy.

“We have been stuck on this one problem – how do proteins fold up – for nearly 50 years,” says CASP co-founder John Moult from the University of Maryland.

“To see DeepMind produce a solution for this, having worked personally on this problem for so long and after so many stops and starts wondering if we’d ever get there, is a very special moment.”

In the experiment, DeepMind used a new deep learning architecture for AlphaFold that was able to interpret and compute the ‘spatial graph’ of 3D proteins, predicting the molecular structure underpinning their folded configuration.

The system, which was trained up by analysing a databank of approximately 170,000 protein structures, brought its unique skillset to this year’s CASP challenge, called CASP14, achieving a median score in its predictions of 92.4 GDT (Global Distance Test).

That’s above the ~90 GDT threshold that’s generally considered to be competitive with the same results obtained via experimental methods, and DeepMind says its predictions are only off by about 1.6 angstroms on average (about the width of an atom).

“I nearly fell off my chair when I saw these results,” says genomics researcher Ewan Birney from the European Molecular Biology Laboratory.

“I know how rigorous CASP is – it basically ensures that computational modelling must perform on the challenging task of ab initio protein folding. It was humbling to see that these models could do that so accurately. There will be many aspects to understand but this is a huge advance for science.”

It’s worth noting that the research has not yet been peer-reviewed, nor published in a scientific journal (although DeepMind’s researchers say that’s on the way).

Even so, experts who are familiar with the field are already recognising and applauding the breakthrough, even if the full report and detailed results are yet to be seen.

“This computational work represents a stunning advance on the protein-folding problem, a 50-year old grand challenge in biology,” says structural biologist Venki Ramakrishnan, president of the Royal Society.

“It has occurred decades before many people in the field would have predicted.”

The full findings are not yet published, but you can see the abstract for the research, “High Accuracy Protein Structure Prediction Using Deep Learning”, here, and find more information on CASP14 here.

Let’s block ads! (Why?)



Source link

Continue Reading

Science

A 'Beaver Full Moon' With Lunar Eclipse Happened This Morning—And Folks Took Some Stunning Photos – Good News Network

Published

 on


If you were up in the early hours of this morning, you may have noticed the full moon turning a shade or so darker and redder.

Thomas Lipke

What you were seeing is called a penumbral lunar eclipse. Caused by the moon dipping behind the Earth’s fuzzy penumbra, or outer shadow, this subtle shading effect peaked at 4:32 am ET November 30, when—according to NASA—83% of the moon was in the shadow of our planet.

NASA has also given a list of the names November’s full moon is known by: The Algonquin tribes have long called this the Cold Moon after the long, frozen nights. Others know it as the Frost Moon, while an Old European Name is Oak Moon: perhaps because of ancient Druid traditions that involve harvesting mistletoe from oak trees for the upcoming winter solstice.

In America, the November full moon is perhaps still best known as the Beaver Moon—with Native Americans associating it with a time when the beavers are scrabbling to finish building their dens from mud and sticks and rocks in preparation for winter.

While this was the last penumbral eclipse of the year, don’t worry if you missed the occurrence due to sleep or clouds.

For those who didn’t get to witness the phenomenon in person, from San Francisco to Michigan to the Sydney Opera House, here are some stunning pictures of this year’s last partial lunar eclipse.

RELATED: With Every Planet Visible This Week and Leonid Meteor Shower Shooting Fireballs, It’s Time to Get Out the Telescope

P.S. The next full moon will be the Cold Christmas Moon on December 29, 2020.

The full moon captured with the San Francisco skyline view at Alameda

A peaceful scene from Mackinac Island in Michigan

Surreal views from Joshua Tree

The Columbia River Gorge became a moonrise kingdom

Cool blue views were taken by this photographer in Northumberland, England

This photographer in Russia caught an image straight from a folk tale

Clouds added interest and atmosphere to these photos taken in Preston, England

A calming moment was captured on Rhode Island

The moon united photographers everywhere last night. Here’s a view from Sydney.

SHARE These Far-Out Views With Friends on Social Media…

Let’s block ads! (Why?)



Source link

Continue Reading

Trending