adplus-dvertising
Connect with us

Science

Paul Berg, pioneer in gene splicing who led way for biotech, dies at 96

Published

 on

Paul Berg, a Nobel laureate biochemist whose breakthrough in splicing DNA molecules helped place the foundations for the biotech industry, but who was once so concerned about possible risks from manipulating genes that he asked scientists to allow government oversight, died Feb. 15 at his home on the Stanford University campus in California. He was 96.

Stanford announced the death in a statement. No cause was given.

Dr. Berg’s question – as he and other scientists in the 1950s and ’60s learned more about the double-helix structure of DNA – was whether it was possible to transfer, from one organism to another, bits of genetic information. Success would give biologists and medical researchers an entirely new tool kit, once considered only the realm of science fiction stories about cloning.

In 1972, he gave the answer. Dr. Berg published a paper in a scientific journal that revealed he had mixed DNA from E. coli bacteria and a virus, SV40, linked to tumors in monkeys and transmissible to humans. An uproar followed.

Medical ethicists questioned whether Dr. Berg was toying with the natural order by creating what became known as recombinant DNA. Public health officials and others wondered if swapping DNA could create new plagues or unleash environmental catastrophes. “Is this the answer to Dr. Frankenstein’s dream?” later asked Alfred Vellucci, the mayor of Cambridge, Mass., home of Harvard University and the Massachusetts Institute of Technology.

Dr. Berg, too, had worries. He paused his experiments with SV40 and E. coli, uneasy over intersplicing the DNA of a disease-causing virus and a common intestinal bacteria.

A 1974 letter Dr. Berg signed with 10 colleagues, published in the journal Science, noted “serious concern that some of these artificial recombinant DNA molecules could prove biologically hazardous.” The letter called for an international meeting of the scientific community to “deal with the potential biohazards of recombinant DNA molecules.”

The gathering took place in a former chapel in Pacific Grove, Calif., in February 1975 with more than 140 scientists from around the world. They agreed to a general set of principles that included limits on the types of genes used and safeguards to keep recombinant DNA confined to laboratories. The guidelines reached at the Asilomar Conference Center were adopted in 1976 by the National Institutes of Health and similar oversight groups in other countries.

Many of the ground rules set by the conference have been revised or dropped as researchers developed greater understanding of genetics. Yet in hindsight, the worst-case thinking of the early years was merited, many researchers say.

“We had to be terribly cautious,” George Rathmann, the former chief executive of the biotech firm Amgen, said in 2005. “You can’t put these things back in a bottle.”

Other participants, however, described Dr. Berg and others as overstating the possible risks from the gene-splicing discoveries.

“It was a reflection of the Vietnam era and earlier history,” Waclaw Szybalski, then a professor and geneticist at the University of Wisconsin at Madison, told Science News in 1985. “Physicists were guilty of the atomic bomb, and chemists were guilty of napalm. Biologists were trying very hard to be guilty of something.”

Dr. Berg stood by his caution at the time. “I couldn’t say there was zero risk,” he recalled several years after being awarded the Nobel Prize in chemistry in 1980. He shared the prize with two other genetic researchers, Walter Gilbert and Frederick Sanger.

The Nobel Committee noted how Dr. Berg’s pioneering experiment in transplanting DNA molecules “has resulted in the development of a new technology, often called genetic engineering or gene manipulation.”

That also brought major commercial opportunities for what became the biotech industry, ranging from genetically modified crops to hundreds of drugs and therapies. The early products in the 1980s included vaccines for types of hepatitis and insulin. Previously, insulin from animals such as cattle and pigs were used in human treatment.

Recombinant DNA has been used in monoclonal antibodies that can be used as part of covid treatment, and in the latest coronavirus vaccine, Novavax, which was given emergency approval by the U.S. Food and Drug Administration last year.

In gene therapy, researchers are exploring ways to use CRISPR-based technology – essentially genetic scissors that can insert, repair or edit genes – for conditions caused by genetic mutations such as cystic fibrosis, Duchenne muscular dystrophy and Huntington’s disease.

Dr. Berg did not patent his findings, allowing pharmaceutical companies and other researchers to advance his work.

“You did science,” he said, “because you loved it.”

– – –

Science club beginnings

Paul Berg was born June 30, 1926, in Brooklyn as one of three sons of a father who worked in clothing manufacturing and a mother who was a homemaker. In high school, his interest in research was first kindled by a woman named Sophie Wolfe, who ran the science club after classes, he recounted.

During World War II, he tried to enlist at 17 to become a Navy aviator but was turned down because of his age. He later did preliminary flight training while studying at Pennsylvania State University. He was called up during the war and served on ships in the Atlantic and Pacific. Dr. Berg graduated in 1948 from Penn State, and received his doctorate from Western Reserve University (now Case Western Reserve University) in 1952.

Dr. Berg did postdoctoral work in cancer research and was an assistant professor of microbiology at the Washington University School of Medicine from 1955 to 1959, when he accepted a position at Stanford’s medical school.

In the early 1980s he led a campaign that raised more than $50 million to build the Beckman Center for Molecular and Genetic Medicine, which opened in 1989. Dr. Berg served as director of the center until 2000.

In 2004, Dr. Berg was one of 20 Nobel laureates who signed an open letter asserting that the administration of President George W. Bush was blocking or distorting scientific evidence to support policy decisions. The letter cited omissions of climate change data or decisions to ignore scientific analysis that questioned White House claims over Iraq’s weapons capabilities before the U.S.-led invasion in 2003.

Dr. Berg married Mildred Levy in 1947; she died in 2021. Survivors include a son, John.

Dr. Berg gave another contribution to molecular biology: the lingo. A recurring joke in research circles refers to the moment of the gene-splicing discovery. Anything before that is “B.C.,” before cloning.

 

728x90x4

Source link

Continue Reading

News

B.C. sets up a panel on bear deaths, will review conservation officer training

Published

 on

 

VICTORIA – The British Columbia government is partnering with a bear welfare group to reduce the number of bears being euthanized in the province.

Nicholas Scapillati, executive director of Grizzly Bear Foundation, said Monday that it comes after months-long discussions with the province on how to protect bears, with the goal to give the animals a “better and second chance at life in the wild.”

Scapillati said what’s exciting about the project is that the government is open to working with outside experts and the public.

“So, they’ll be working through Indigenous knowledge and scientific understanding, bringing in the latest techniques and training expertise from leading experts,” he said in an interview.

B.C. government data show conservation officers destroyed 603 black bears and 23 grizzly bears in 2023, while 154 black bears were killed by officers in the first six months of this year.

Scapillati said the group will publish a report with recommendations by next spring, while an independent oversight committee will be set up to review all bear encounters with conservation officers to provide advice to the government.

Environment Minister George Heyman said in a statement that they are looking for new ways to ensure conservation officers “have the trust of the communities they serve,” and the panel will make recommendations to enhance officer training and improve policies.

Lesley Fox, with the wildlife protection group The Fur-Bearers, said they’ve been calling for such a committee for decades.

“This move demonstrates the government is listening,” said Fox. “I suspect, because of the impending election, their listening skills are potentially a little sharper than they normally are.”

Fox said the partnership came from “a place of long frustration” as provincial conservation officers kill more than 500 black bears every year on average, and the public is “no longer tolerating this kind of approach.”

“I think that the conservation officer service and the B.C. government are aware they need to change, and certainly the public has been asking for it,” said Fox.

Fox said there’s a lot of optimism about the new partnership, but, as with any government, there will likely be a lot of red tape to get through.

“I think speed is going to be important, whether or not the committee has the ability to make change and make change relatively quickly without having to study an issue to death, ” said Fox.

This report by The Canadian Press was first published Sept. 9, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

Science

Asteroid Apophis will visit Earth in 2029, and this European satellite will be along for the ride

Published

 on

Asteroid Apophis

The European Space Agency is fast-tracking a new mission called Ramses, which will fly to near-Earth asteroid 99942 Apophis and join the space rock in 2029 when it comes very close to our planet — closer even than the region where geosynchronous satellites sit.

Ramses is short for Rapid Apophis Mission for Space Safety and, as its name suggests, is the next phase in humanity’s efforts to learn more about near-Earth asteroids (NEOs) and how we might deflect them should one ever be discovered on a collision course with planet Earth.

In order to launch in time to rendezvous with Apophis in February 2029, scientists at the European Space Agency have been given permission to start planning Ramses even before the multinational space agency officially adopts the mission. The sanctioning and appropriation of funding for the Ramses mission will hopefully take place at ESA’s Ministerial Council meeting (involving representatives from each of ESA’s member states) in November of 2025. To arrive at Apophis in February 2029, launch would have to take place in April 2028, the agency says.

This is a big deal because large asteroids don’t come this close to Earth very often. It is thus scientifically precious that, on April 13, 2029, Apophis will pass within 19,794 miles (31,860 kilometers) of Earth. For comparison, geosynchronous orbit is 22,236 miles (35,786 km) above Earth’s surface. Such close fly-bys by asteroids hundreds of meters across (Apophis is about 1,230 feet, or 375 meters, across) only occur on average once every 5,000 to 10,000 years. Miss this one, and we’ve got a long time to wait for the next.

When Apophis was discovered in 2004, it was for a short time the most dangerous asteroid known, being classified as having the potential to impact with Earth possibly in 2029, 2036, or 2068. Should an asteroid of its size strike Earth, it could gouge out a crater several kilometers across and devastate a country with shock waves, flash heating and earth tremors. If it crashed down in the ocean, it could send a towering tsunami to devastate coastlines in multiple countries.

Over time, as our knowledge of Apophis’ orbit became more refined, however, the risk of impact  greatly went down. Radar observations of the asteroid in March of 2021 reduced the uncertainty in Apophis’ orbit from hundreds of kilometers to just a few kilometers, finally removing any lingering worries about an impact — at least for the next 100 years. (Beyond 100 years, asteroid orbits can become too unpredictable to plot with any accuracy, but there’s currently no suggestion that an impact will occur after 100 years.) So, Earth is expected to be perfectly safe in 2029 when Apophis comes through. Still, scientists want to see how Apophis responds by coming so close to Earth and entering our planet’s gravitational field.

“There is still so much we have yet to learn about asteroids but, until now, we have had to travel deep into the solar system to study them and perform experiments ourselves to interact with their surface,” said Patrick Michel, who is the Director of Research at CNRS at Observatoire de la Côte d’Azur in Nice, France, in a statement. “Nature is bringing one to us and conducting the experiment itself. All we need to do is watch as Apophis is stretched and squeezed by strong tidal forces that may trigger landslides and other disturbances and reveal new material from beneath the surface.”

The Goldstone radar’s imagery of asteroid 99942 Apophis as it made its closest approach to Earth, in March 2021. (Image credit: NASA/JPL–Caltech/NSF/AUI/GBO)

By arriving at Apophis before the asteroid’s close encounter with Earth, and sticking with it throughout the flyby and beyond, Ramses will be in prime position to conduct before-and-after surveys to see how Apophis reacts to Earth. By looking for disturbances Earth’s gravitational tidal forces trigger on the asteroid’s surface, Ramses will be able to learn about Apophis’ internal structure, density, porosity and composition, all of which are characteristics that we would need to first understand before considering how best to deflect a similar asteroid were one ever found to be on a collision course with our world.

Besides assisting in protecting Earth, learning about Apophis will give scientists further insights into how similar asteroids formed in the early solar system, and, in the process, how  planets (including Earth) formed out of the same material.

One way we already know Earth will affect Apophis is by changing its orbit. Currently, Apophis is categorized as an Aten-type asteroid, which is what we call the class of near-Earth objects that have a shorter orbit around the sun than Earth does. Apophis currently gets as far as 0.92 astronomical units (137.6 million km, or 85.5 million miles) from the sun. However, our planet will give Apophis a gravitational nudge that will enlarge its orbit to 1.1 astronomical units (164.6 million km, or 102 million miles), such that its orbital period becomes longer than Earth’s.

It will then be classed as an Apollo-type asteroid.

Ramses won’t be alone in tracking Apophis. NASA has repurposed their OSIRIS-REx mission, which returned a sample from another near-Earth asteroid, 101955 Bennu, in 2023. However, the spacecraft, renamed OSIRIS-APEX (Apophis Explorer), won’t arrive at the asteroid until April 23, 2029, ten days after the close encounter with Earth. OSIRIS-APEX will initially perform a flyby of Apophis at a distance of about 2,500 miles (4,000 km) from the object, then return in June that year to settle into orbit around Apophis for an 18-month mission.

Related Stories:

Furthermore, the European Space Agency still plans on launching its Hera spacecraft in October 2024 to follow-up on the DART mission to the double asteroid Didymos and Dimorphos. DART impacted the latter in a test of kinetic impactor capabilities for potentially changing a hazardous asteroid’s orbit around our planet. Hera will survey the binary asteroid system and observe the crater made by DART’s sacrifice to gain a better understanding of Dimorphos’ structure and composition post-impact, so that we can place the results in context.

The more near-Earth asteroids like Dimorphos and Apophis that we study, the greater that context becomes. Perhaps, one day, the understanding that we have gained from these missions will indeed save our planet.

 

728x90x4

Source link

Continue Reading

Science

McMaster Astronomy grad student takes a star turn in Killarney Provincial Park

Published

 on

Art News Canada

Astronomy PhD candidate Veronika Dornan served as the astronomer in residence at Killarney Provincial Park. She’ll be back again in October when the nights are longer (and bug free). Dornan has delivered dozens of talks and shows at the W.J. McCallion Planetarium and in the community. (Photos by Veronika Dornan)

Veronika Dornan followed up the April 8 total solar eclipse with another awe-inspiring celestial moment.

This time, the astronomy PhD candidate wasn’t cheering alongside thousands of people at McMaster — she was alone with a telescope in the heart of Killarney Provincial Park just before midnight.

Dornan had the park’s telescope pointed at one of the hundreds of globular star clusters that make up the Milky Way. She was seeing light from thousands of stars that had travelled more than 10,000 years to reach the Earth.

This time there was no cheering: All she could say was a quiet “wow”.

Dornan drove five hours north to spend a week at Killarney Park as the astronomer in residence. part of an outreach program run by the park in collaboration with the Allan I. Carswell Observatory at York University.

Dornan applied because the program combines her two favourite things — astronomy and the great outdoors. While she’s a lifelong camper, hiker and canoeist, it was her first trip to Killarney.

Bruce Waters, who’s taught astronomy to the public since 1981 and co-founded Stars over Killarney, warned Dornan that once she went to the park, she wouldn’t want to go anywhere else.

The park lived up to the hype. Everywhere she looked was like a painting, something “a certain Group of Seven had already thought many times over.”

The dome telescopes at Killarney Provincial Park.

She spent her days hiking the Granite Ridge, Crack and Chikanishing trails and kayaking on George Lake.  At night, she went stargazing with campers — or at least tried to. The weather didn’t cooperate most evenings — instead of looking through the park’s two domed telescopes, Dornan improvised and gave talks in the amphitheatre beneath cloudy skies.

Dornan has delivered dozens of talks over the years in McMaster’s W.J. McCallion Planetarium and out in the community, but “it’s a bit more complicated when you’re talking about the stars while at the same time fighting for your life against swarms of bugs.”

When the campers called it a night and the clouds parted, Dornan spent hours observing the stars. “I seriously messed up my sleep schedule.”

She also gave astrophotography a try during her residency, capturing images of the Ring Nebula and the Great Hercules Cluster.

A star cluster image by Veronika Dornan

“People assume astronomers take their own photos. I needed quite a lot of guidance for how to take the images. It took a while to fiddle with the image properties, but I got my images.”

Dornan’s been invited back for another week-long residency in bug-free October, when longer nights offer more opportunities to explore and photograph the final frontier.

She’s aiming to defend her PhD thesis early next summer, then build a career that continues to combine research and outreach.

“Research leads to new discoveries which gives you exciting things to talk about. And if you’re not connecting with the public then what’s the point of doing research?”

 

728x90x4

Source link

Continue Reading

Trending