Connect with us

Science

Potentially hazardous asteroid Phaethon has changing rotation

Published

 on

Near-Earth asteroid 3200 Phaethon is potentially hazardous, with an average diameter of about 5.4 kilometers. It is one of the largest asteroids that come close to Earth to be classified as potentially dangerous.

A team of scientists led by Arecibo Observatory and the University of Central Florida has measured a change in the rotation period of the asteroid 3200 Phaethon, a future spacecraft target. The finding demonstrates how planetary defense programs are progressing in categorizing potentially dangerous asteroids.

Phaethon’s orbit is known very accurately, and it poses no threat to Earth for the foreseeable future. It rotates once every 3.6 hours, decreasing that rotation period by about four milliseconds per year.

Phaethon has regularly been spotted using optical light curves, which indicate variations in its brightness as it rotates. It has also been observed using NASA’s Goldstone Deep Space Communications Complex radar. Phaethon has also been spotted by stellar occultations, in which, as seen from specific points on Earth, an asteroid appears to pass in front of a star, briefly obliterating it.

Genius Dog 336 x 280 - Animated

To support the DESTINY+ mission, which is scheduled to launch in 2024 and fly by Phaethon in 2028, Arecibo planetary scientist Sean Marshall is leading efforts to use these observational data to determine the size, shape and rotation state of Phaethon. Marshall developed a shape model using information from radar, optical light curves from 1989 to 2021, and occultations from 2019 to 2021. The model depicts Phaethon as top-shaped or somewhat rounded with a ridge around its equator.

While finalizing the shape model, the team unexpectedly had difficulty fitting the most recent light curve observations from late 2021.

Marshall said, “The predictions from the shape model did not match the data. The times when the model was brightest were clearly out of sync with those when Phaethon was observed to be brightest. I realized this could be explained by Phaethon’s rotation period changing slightly at some time before the 2021 observations, perhaps from comet-like activity when it was near perihelion in December 2020.”

“After investigating more carefully, we found that the full data set, from 1989 through 2021, could be fit by a model with constant rotational acceleration. This accelerating model provided a much better fit to the data from 2021 and slightly improved the model’s fits to data from earlier years.”

The measured acceleration is 3.710-8 rad/day2, which translates to a four-millisecond annual decrease in Phaethon’s rotation period. Despite its tiny size, this alteration has been observed in an extensive observational data collection that spans 32 years and thousands of Phaethon revolutions.

Marshall says“This is good news for the DESTINY+ team since a steady change means that Phaethon’s orientation at the time of the spacecraft’s flyby can be predicted accurately, so they will know which regions will be illuminated by the Sun.”

There had been an earlier hint of Phaethon’s changing rotation period in an optical light curve from 1989, which was first reported by Hanuš et al. 2016.

Marshall says, “This Phaethon model was also out of sync with that light curve observation, but there were not yet enough other data to explain this discrepancy.”

The discovery is announced at the 54th annual American Astronomical Society’s Division for Planetary Sciences meeting.

Source link

Continue Reading

Science

NASA posts high-resolution images of Orion’s final lunar flyby

Published

 on

Orion just made its final pass around the moon on its way to Earth, and NASA has released some of the spacecraft’s best photos so far. Taken by a high-resolution camera (actually a heavily modified GoPro Hero 4) mounted on the tip of Orion’s solar arrays, they show the spacecraft rounding the Moon then getting a closeup shot of the far side.

The photos Orion snapped on its first near pass to the Moon were rather grainy and blown out, likely because they were captured with Orion’s Optical Navigation Camera rather than the solar array-mounted GoPros. Other GoPro shots were a touch overexposed, but NASA appears to have nailed the settings with its latest series of shots.

Space photos were obviously not the primary goal of the Artemis I mission, but they’re important for public relations, as NASA learned many moons ago. It was a bit surprising that NASA didn’t show some high-resolution closeups of the Moon’s surface when it passed by the first time, but better late than never.

Orion’s performance so far has been “outstanding,” program manager Howard Hu told reporters last week. It launched on November 15th as part of the Artemis 1 mission atop NASA’s mighty Space Launch System. Days ago, the craft completed a three and a half minute engine burn (the longest on the trip so far) to set it on course for a splashdown on December 11th.

Genius Dog 336 x 280 - Animated

The next mission, Artemis II, is scheduled in 2024 to carry astronauts on a similar path to Artemis I without landing on the moon. Then, humans will finally set foot on the lunar surface again with Artemis III, slated for launch in 2025.

Source link

Continue Reading

Science

Biosignatures: Discovery Of Earth’s Oldest DNA Breaks Record By One Million Years

Published

 on

Taxonomic profiles of the plant assemblage found in the metagenomes. Taxa in bold are genera only found as DNA and not as macrofossil or pollen. Asterisks indicate those that are found at other Pliocene Arctic sites. Extinct species as identified by either macrofossils or phylogenetic placements are marked with a dagger. Reads classified as Pyrus and Malus are marked with a pound symbol, and are probably over-classified DNA sequences belonging to another species within Rosaceae that are not present as a reference genome. — University of Cambridge

Two-million-year-old DNA has been identified for the first time – opening a ‘game-changing’ new chapter in the history of evolution.

 

Microscopic fragments of environmental DNA were found in Ice Age sediment in northern Greenland. Using cutting-edge technology, researchers discovered the fragments are one million years older than the previous record for DNA sampled from a Siberian mammoth bone.

The ancient DNA has been used to map a two-million-year-old ecosystem which weathered extreme climate change. Researchers hope the results could help to predict the long-term environmental toll of today’s global warming.

Genius Dog 336 x 280 - Animated

The discovery was made by a team of scientists led by Professor Eske Willerslev and Professor Kurt H. Kjær. Professor Willerslev is a Fellow of St John’s College, University of Cambridge, and Director of the Lundbeck Foundation GeoGenetics Centre at the University of Copenhagen where Professor Kjær, a geology expert, is also based.

The results of the 41 usable samples found hidden in clay and quartz are published today (7 DECEMBER 2022) in Nature.

Professor Willerslev said: “A new chapter spanning one million extra years of history has finally been opened and for the first time we can look directly at the DNA of a past ecosystem that far back in time..

“DNA can degrade quickly but we’ve shown that under the right circumstances, we can now go back further in time than anyone could have dared imagine.”

Professor Kjær said: “The ancient DNA samples were found buried deep in sediment that had built-up over 20,000 years. The sediment was eventually preserved in ice or permafrost and, crucially, not disturbed by humans for two million years.”

The incomplete samples, a few millionths of a millimetre long, were taken from the København Formation, a sediment deposit almost 100 metres thick tucked in the mouth of a fjord in the Arctic Ocean in Greenland’s northernmost point. The climate in Greenland at the time varied between Arctic and temperate and was between 10-17C warmer than Greenland is today. The sediment built up metre by metre in a shallow bay.

Scientists discovered evidence of animals, plants and microorganisms including reindeer, hares, lemmings, birch and poplar trees. Researchers even found that Mastodon, an Ice Age mammal, roamed as far as Greenland before later becoming extinct. Previously it was thought the range of the elephant-like animals did not extend as far as Greenland from its known origins of North and Central America.

Detective work by 40 researchers from Denmark, the UK, France, Sweden, Norway, the USA and Germany, unlocked the secrets of the fragments of DNA. The process was painstaking – first they needed to establish whether there was DNA hidden in the clay and quartz, and if there was, could they successfully detach the DNA from the sediment to examine it? The answer, eventually, was yes. The researchers compared every single DNA fragment with extensive libraries of DNA collected from present-day animals, plants and microorganisms. A picture began to emerge of the DNA from trees, bushes, birds, animals and microorganisms.

Some of the DNA fragments were easy to classify as predecessors to present-day species, others could only be linked at genus level, and some originated from species impossible to place in the DNA libraries of animals, plants and microorganisms still living in the 21st century.

The two-million-year-old samples also help academics build a picture of a previously unknown stage in the evolution of the DNA of a range of species still in existence today.

Professor Kjær said: “Expeditions are expensive and many of the samples were taken back in 2006 when the team were in Greenland for another project, they have been stored ever since.

“It wasn’t until a new generation of DNA extraction and sequencing equipment was developed that we’ve been able to locate and identify extremely small and damaged fragments of DNA in the sediment samples. It meant we were finally able to map a two-million-year-old ecosystem.”

Assistant Professor Mikkel W. Pedersen, co-first author on the paper and also based at the Lundbeck Foundation GeoGenetics Centre, said: “The Kap København ecosystem, which has no present-day equivalent, existed at considerably higher temperatures than we have today – and because, on the face of it, the climate seems to have been similar to the climate we expect on our planet in the future due to global warming.

“One of the key factors here is to what degree species will be able to adapt to the change in conditions arising from a significant increase in temperature. The data suggests that more species can evolve and adapt to wildly varying temperatures than previously thought. But, crucially, these results show they need time to do this. The speed of today’s global warming means organisms and species do not have that time so the climate emergency remains a huge threat to biodiversity and the world – extinction is on the horizon for some species including plants and trees.”

While reviewing the ancient DNA from the Kap København Formation, the researchers also found DNA from a wide range of microorganisms, including bacteria and fungi, which they are continuing to map. A detailed description of how the interaction – between animals, plants and single-cell organisms – within the former ecosystem at Greenland’s northernmost point worked biologically will be presented in a future research paper.

It is now hoped that some of the ‘tricks’ of the two-million-year-old plant DNA discovered may be used to help make some endangered species more resistant to a warming climate.

Professor Kjær said: “It is possible that genetic engineering could mimic the strategy developed by plants and trees two million years ago to survive in a climate characterised by rising temperatures and prevent the extinction of some species, plants and trees. This is one of the reasons this scientific advance is so significant because it could reveal how to attempt to counteract the devastating impact of global warming.”

The findings from the Kap København Formation in Greenland have opened up a whole new period in DNA detection.

Professor Willerslev explained: “DNA generally survives best in cold, dry conditions such as those that prevailed during most of the period since the material was deposited at Kap København. Now that we have successfully extracted ancient DNA from clay and quartz, it may be possible that clay may have preserved ancient DNA in warm, humid environments in sites found in Africa.

“If we can begin to explore ancient DNA in clay grains from Africa, we may be able to gather ground-breaking information about the origin of many different species – perhaps even new knowledge about the first humans and their ancestors – the possibilities are endless.”

 

Astrobiology

Source link

Continue Reading

Science

How you can watch Mars disappear behind the full moon tonight

Published

 on

If you happen to have clear skies on Wednesday night, you’ll be able to catch a planet disappearing behind the moon.

The event occurs at a special time for Mars. On Wednesday night, Mars will be directly opposite the sun’s position in the sky, rising as the sun sets and setting as the sun rises. This is called an opposition and is when Mars is at its brightest in the night sky.

“Having the moon hide a bright planet is rare,” said Alan Dyer, an amateur astronomer and accomplished astrophotographer who will watch the event from his home near Strathmore, Alta.

“Having it do so on the very night a planet is at its brightest, as Mars now is, is very unusual. And with the objects so well-placed high in our sky. Fabulous!”

Genius Dog 336 x 280 - Animated

When a planet or a star disappears behind another object, it’s called an occultation. The next time this happens between the moon and Mars will be in January 2025, although it will be two days before opposition.

When and where to look

Canada is in a prime location for the event.

Elaina Hyde, director of the Allan I. Carswell Observatory at York University’s department of physics and astronomy in Toronto, is also looking forward to Wednesday night’s occultation.

“Tonight, the occultation of Mars by our moon requires a ‘just right’ alignment,” she said. “In fact, not everyone on Earth will even be able to see this one.”

If you want to watch Mars blink out behind the moon, you just need clear skies. However, binoculars will provide a better view (though, be warned: a full moon is quite bright with binoculars or a telescope).

Because the occultation is between the moon, which is super bright, and Mars, which is at its brightest, they’re easy to find.

All you have to do is look east to find the moon. Mars will appear at the left or lower left, depending on your location.

People across North America in the shaded areas on the map will enjoy the the sight of the moon eclipsing Mars on Wednesday night. (Gregg Dinderman/Sky & Telescope)

You can gradually watch the event unfold right after sunset, when the pair will be farther apart. Over the next few hours, the pair will gradually appear to get closer and closer. The moon will seem to move to the left as they rise in the sky, eventually overtaking Mars.

How long Mars will stay eclipsed behind the moon depends on your location: it could be several minutes or about an hour. This is because it depends on how much of the moon’s disc Mars will need to traverse.

For example, in Toronto, Mars will only cross a small fraction of the moon’s lower disc, beginning at 10:29 p.m. ET and re-emerging roughly 45 minutes later. In Edmonton, it will take more than an hour for the entire event.

Here are the approximate times when Mars will disappear behind the moon. All times are local:

  • Vancouver: 6:55 p.m.
  • Edmonton: 8:04 p.m.
  • Calgary: 7:59 p.m.
  • Regina: 9:01 p.m.
  • Saskatoon: 9:03 p.m.
  • Winnipeg: 9:05 p.m.
  • Toronto: 10:29 p.m.
  • Ottawa: 10:36 p.m.
  • Montreal: 10:40 p.m.
  • Iqaluit: 9:50 p.m.
  • Whitehorse: 8:25 p.m.
  • Yellowknife: 8:23 p.m.

Thursday:

  • Halifax: 12:15 a.m.
  • Charlottetown: 12:07 a.m.
  • Moncton: 12:04 a.m.
  • St. John’s: 12:25 a.m.

You can find more locations here.

Remember, the event occurs all night, so you can take a peek outside once in a while leading up to the occultation and afterwards as it progresses.

You may also notice a bright red star not too far away from the moon and Mars, but to the right. That’s Aldebaran, the brightest star in the constellation Taurus.

This red giant lies near one of the most beautiful open star clusters in the northern sky, Hyades. In a few days’ time, once the moon moves away from that area of the sky, try using a pair of binoculars to check out the cluster.

Also, since you’re outside on Wednesday night, why not take a peak to the southwest where Jupiter will be quite apparent as the brightest object in the sky (aside from the moon). A pair of binoculars will also reveal four of its brightest moons, Io, Callisto, Ganymede and Europa.

Source link

Continue Reading

Trending