Connect with us

Science

Revealed: The Solar System’s Largest Canyon On Mars Contains Sunken Reservoirs Of Water Ice, Say Scientists – Forbes

Published

 on


A significantly large reservoir of “hidden water” or ice has been found in Valles Marineris, Mars’ “Grand Canyon” and the largest canyon in the Solar System—and it’s so near the surface that it could help sustain a future Martian colony.

So say scientists using an instrument on board a satellite orbiting Mars that’s mapping the hydrogen in the uppermost meter of Martian soil.

“Assuming the hydrogen we see is bound into water molecules, as much as 40% of the near-surface material in this region appears to be water,” said Igor Mitrofanov of the Space Research Institute of the Russian Academy of Sciences in Moscow, Russia.

Scientists already know there is water-ice on Mars at its hard-to-reach poles, but the dramatic landscape of Candor Chaos in the Valles Marineris—where the water-ice was found—is at lower, warmer latitudes where Mars missions tend to land.

Mitrofanov is lead author of the new study published this week in the journal Icarus, which details findings from the Fine Resolution Epithermal Neutron Detector (FREND) neutron telescope on the ESA-Roscosmos ExoMars Trace Gas Orbiter (TGO).

“With TGO we can look down to one metre below this dusty layer and see what’s really going on below Mars’ surface – and, crucially, locate water-rich “oases” that couldn’t be detected with previous instruments,” said Mitrofanov.

The possibly wet area discovered is about the size of the Netherlands, though it could be ice or water that’s chemically bound to other minerals in the Martian surface. “Overall, we think this water more likely exists in the form of ice,” said co-author Alexey Malakhov of the Space Research Institute of the Russian Academy of Sciences.

The science was done by using the telescope to detect neutrons rather than light, with FREND’s higher spatial resolution making the discovery possible. “Neutrons are produced when highly energetic particles known as ‘galactic cosmic rays’ strike Mars; drier soils emit more neutrons than wetter ones, and so we can deduce how much water is in a soil by looking at the neutrons it emits,” said Malakhov.

“We found a central part of Valles Marineris to be packed full of water – far more water than we expected,” he said. “This is very much like Earth’s permafrost regions, where water ice permanently persists under dry soil because of the constant low temperatures.” 

The findings make Valles Marineris ripe for future exploration by Mars rovers, though the terrain will be tough to explore.

The ExoMars Trace Gas Orbiter—part one of a two-part mission by the ESA and Roscomos to Mars—has been in orbit of the red planet since 2017. In June 2023 the second part of the mission—the Rosalind Franklin rover—will land on Oxia Planum on the Martian surface.

Wishing you clear skies and wide eyes.

Adblock test (Why?)



Source link

Continue Reading

Science

Consistent Asteroid Collisions Rock Previous Thinking on Mars Impact Craters – SciTechDaily

Published

 on


This image provides a perspective view of a triple crater in the ancient Martian highlands. Credit: ESA/DLR/FU Berlin

New Curtin University research has confirmed the frequency of asteroid collisions that formed impact craters on <span aria-describedby="tt" class="glossaryLink" data-cmtooltip="

Mars
Mars is the second smallest planet in our solar system and the fourth planet from the sun. Iron oxide is prevalent in Mars’ surface resulting in its reddish color and its nickname "The Red Planet." Mars’ name comes from the Roman god of war.

“>Mars has been consistent over the past 600 million years.

New Curtin University research has confirmed the frequency of asteroid collisions that formed impact craters on Mars has been consistent over the past 600 million years.

The study, published in Earth and Planetary Science Letters, analyzed the formation of more than 500 large Martian craters using a crater detection algorithm previously developed at Curtin, which automatically counts the visible impact craters from a high-resolution image.

Despite previous studies suggesting spikes in the frequency of asteroid collisions, lead researcher Dr. Anthony Lagain, from Curtin’s School of Earth and Planetary Sciences, said his research had found they did not vary much at all for many millions of years.

Impact Craters on Mars

One of the 521 large craters that has been dated in the study. The formation age of this 40km crater has been estimated using the number of small craters accumulated around it since the impact occurred. A portion of these small craters are shown on the right panel and all of them have been detected using the algorithm. In total, more than 1.2 million craters were used to date the Martian craters. Credit: Curtin University

Dr. Lagain said counting impact craters on a planetary surface was the only way to accurately date geological events, such as canyons, rivers, and volcanoes, and to predict when, and how big, future collisions would be.

“On Earth, the erosion of plate tectonics erases the history of our planet. Studying planetary bodies of our Solar System that still conserve their early geological history, such as Mars, helps us to understand the evolution of our planet,” Dr. Lagain said.

“The crater detection algorithm provides us with a thorough understanding of the formation of impact craters including their size and quantity, and the timing and frequency of the asteroid collisions that made them.”

Past studies had suggested that there was a spike in the timing and frequency of asteroid collisions due to the production of debris, Dr. Lagain said.

“When big bodies smash into each other, they break into pieces or debris, which is thought to have an effect on the creation of impact craters,” Dr. Lagain said.

“Our study shows it is unlikely that debris resulted in any changes to the formation of impact craters on planetary surfaces.”

Co-author and leader of the team that created the algorithm, Professor Gretchen Benedix, said the algorithm could also be adapted to work on other planetary surfaces, including the Moon.

“The formation of thousands of lunar craters can now be dated automatically, and their formation frequency analyzed at a higher resolution to investigate their evolution,” Professor Benedix said.

“This will provide us with valuable information that could have future practical applications in nature preservation and agriculture, such as the detection of bushfires and classifying land use.”

Reference: “Has the impact flux of small and large asteroids varied through time on Mars, the Earth and the Moon?” by Anthony Lagain, Mikhail Kreslavsky, David Baratoux, Yebo Liu, Hadrien Devillepoix, Philip Bland, Gretchen K. Benedix, Luc S. Doucet and Konstantinos Servis, 7 January 2022, Earth and Planetary Science Letters.
DOI: 10.1016/j.epsl.2021.117362

Adblock test (Why?)



Source link

Continue Reading

Science

B.C. researchers uncover mechanism that keeps large whales from drowning while feeding on krill – CTV News Vancouver

Published

 on


Vancouver –

New research from the University of British Columbia is shedding light on the ways that whales feed underwater without flooding their airways with seawater.

The research, published this month in Current Biology, shows that lunge-feeding whales – the type that lunge and gulp at large schools of krill – have a special mechanism in the back of their mouths that stops water from entering their lungs when eating.

“It’s kind of like when a human’s uvula moves backwards to block our nasal passages, and our windpipe closes up while swallowing food,” says lead author Dr. Kelsey Gil, a postdoctoral researcher in the department of zoology, in a statement.

Specifically, a fleshy bulb acts as a plug, to close off upper airways, while a larynx closes to block lower airways.

The humpback whale and the blue whale are both lunge-feeders, but the scientists’ research focused on fin whales, thanks in part to being able to travel to Iceland in 2018 and examine carcass remains at a commercial whaling station.

“We haven’t seen this protective mechanism in any other animals, or in the literature. A lot of our knowledge about whales and dolphins comes from toothed whales, which have completely separated respiratory tracts, so similar assumptions have been made about lunge-feeding whales,” Gil said.

Lunge-feeders are impressive, Gil said, because sometimes the amount of food and water they consume is larger than their bodies. After snapping at krill, and while blocking the water from their airways, the whales then drain the ocean water through their baleen, leaving behind the tasty fish.

The study’s senior author Dr. Robert Shadwick, a professor in the UBC department of zoology, says the efficiency of the whales’ feeding is a key factor in their evolution.

“Bulk filter-feeding on krill swarms is highly efficient and the only way to provide the massive amount of energy needed to support such a large body size. This would not be possible without the special anatomical features we have described,” he said in a statement. 

Adblock test (Why?)



Source link

Continue Reading

Science

Study confirmed the frequency of asteroid collisions that formed Mars craters – Tech Explorist

Published

 on


Mapping and counting impact craters are the most commonly used technique to derive detailed insights on geological events and processes shaping the surface of terrestrial planets. Scientists from Curtin University have used a crater detection algorithm to analyze the formation of more than 500 large Martian craters.

The algorithm they used automatically counts the visible impact craters from a high-resolution image. Scientists found that the frequency of asteroid collisions that formed Mars craters has been consistent for over 600 million years.

Lead scientist Dr. Anthony Lagain from Curtin’s School of Earth and Planetary Sciences said, “Despite previous studies suggesting spikes in the frequency of asteroid collisions, this research had found they did not vary much at all for many millions of years.”

“Counting impact craters on a planetary surface was the only way to accurately date geological events, such as canyons, rivers, and volcanoes, and to predict when, and how big, future collisions would be.”

“On Earth, the erosion of plate tectonics erases the history of our planet. Studying planetary bodies of our Solar System that still conserve their early geological history, such as Mars, helps us to understand the evolution of our planet.”

“The crater detection algorithm provides us with a thorough understanding of the formation of impact craters, including their size and quantity, and the timing and frequency of the asteroid collisions that made them.”

“Past studies had suggested that there was a spike in the timing and frequency of asteroid collisions due to the production of debris.”

“When big bodies smash into each other, they break into pieces of debris, which is thought to affect the creation of impact craters.”

“Our study shows it is unlikely that debris resulted in any changes to the formation of impact craters on planetary surfaces.”

Co-author and leader of the team that created the algorithm, Professor Gretchen Benedix, said“the algorithm could also be adapted to work on other planetary surfaces, including the Moon.”

“The formation of thousands of lunar craters can now be dated automatically, and their formation frequency analyzed at a higher resolution to investigate their evolution.”

“This will provide us with valuable information that could have future practical applications in nature preservation and agriculture, such as the detection of bushfires and classifying land use.”

Journal Reference:

  1. Anthony Lagain et al. Has the impact flux of small and large asteroids varied through time on Mars, the Earth, and the Moon? DOI: 10.1016/j.epsl.2021.117362

Adblock test (Why?)



Source link

Continue Reading

Trending