adplus-dvertising
Connect with us

Science

SLS ready to roll to LC-39B for launch, teams prepare for multiple launch trajectories – NASASpaceFlight.com – NASASpaceflight.com

Published

 on


NASA’s Space Launch System (SLS) rocket has completed all pre-launch preparations inside the Vehicle Assembly Building at the Kennedy Space Center in Florida and is ready for its 4.2-mile (6.7-km) journey to Launch Complex 39B.

The multi-hour rollout process is currently set to begin at 9 PM EDT on Tuesday, August 16 (01:00 UTC on Wednesday, August 17), weather permitting – which should result in a sunrise arrival at the pad.

The rollout is the last major milestone ahead of launch, which will differ from most recent missions in that the rocket’s needed azimuth — or flight path — will continuously change through each day’s launch window.

Launching to the Moon

Launching into a rendezvous orbit with a satellite or station in low Earth orbit can be relatively simplified as needing to launch directly into the plane – and therefore the same orbital inclination – of the target’s orbit.

For example, when launching to the International Space Station from Florida, the azimuth the rocket follows is 44.98°. This does not change based on when within the daily window liftoff occurs.

However, the same is not true when trying to launch into an intercept trajectory with the Moon.

[embedded content]

As related by Artemis 1 Ascent/Entry Flight Director Judd Frieling to NASASpaceflight during Artemis Day events in Mission Control at the Johnson Space Center, the Moon’s motion in its orbit coupled with its constantly-changing relative inclination to the launch site complicates the needed launch azimuth for SLS.

On each launch day, the azimuth SLS must fly moves incrementally, second-by-second, throughout the window to match the movement of the Moon relative to the Earth for the translunar injection (TLI) burn.

According to NASA, for SLS and Artemis 1, the azimuth at the opening of the window on all three launch attempts on August 29, September 2, and September 5 is 62°, resulting in a 38° inclination orbit.

At the end of each window, the azimuth flown would be 108° into a 32° inclination orbit.

But before SLS can be readied for its roll onto course on launch day, it must first arrive at the pad.

Rolling out for launch

The Artemis 1 launch rollout will mark the first time since May 31, 2011, that a vehicle will emerge from the Vehicle Assembly Building (VAB) at the Kennedy Space Center for launch operations.

SLS and Orion at LC-39B during preparations for the WDR (Credit: Julia Bergeron for NSF/L2)

As it has twice already for its wet dress rehearsal campaigns, the SLS rocket for Artemis 1 will make the journey to LC-39B atop crawler-transporter 2, one of two crawler-transporters owned by NASA and the only one modified to carry the full stack Artemis/SLS vehicle to the pad.

The upgrades were necessary due to the crawler’s age and the increased mass of the SLS vehicle with its combined Mobile Launcher (ML).

The combined SLS/ML weight is approximately 15 million pounds (6.8 million kg) and is significantly heavier than the previous record holder in the Space Shuttle at 12 million pounds (5.4 million kg).

Upgrades included a rating to handle 18 million pounds (8.1 million kg), a 50% greater load than was originally envisioned, as well as a new 1,500-kilowatt electrical power generator, parking and service brakes, redesigned and upgraded roller bearings, and several other modifications for the Artemis program.

Like the crawlers, their purpose-built road, the crawlerway, also underwent upgrades between Shuttle and SLS.

Beginning in 2013, the crawlerway’s foundations were repaired with new lime rock to return them to their original condition and ready them for the Block 1B SLS, presently scheduled for later this decade, which will be heavier than the Block 1 SLS used for Artemis 1.

The 15 million pound SLS and ML on LC-39B during Wet Dress Rehearsal. (Credit: Nathan Barker for NSF)

Additionally, 30,000 tons of new Alabama river rock were added to return the crawlerway to its optimal depth.

For Launch Complex 39B, which was used for Apollo, Skylab, Apollo-Soyuz, Space Shuttle, and Ares I-X missions, the pad was slowly modified in stages, beginning in the final years of the Shuttle program, into a clean pad configuration with three, 600-foot (183 m) lightning towers connected with catenary wires.

The clean pad is without the Shuttle-era fixed and rotating service structures that serviced the Shuttle stack.

The sound suppression system, flame trench, cabling, and other systems were also upgraded during the transition to SLS. Work on Pad 39B has also included a new 1.25 million gallon liquid hydrogen tank, though this is not yet complete and will not be used for Artemis 1.

Pad 39B’s clean pad configuration was designed to be able to handle different types of rockets as part of a multi-user spaceport emphasis. To date, only Northrop Grumman expressed interest in the pad share for their now-canceled OmegA rocket.

Artemis 1

Artemis 1 is scheduled to spend 13 days at Pad 39B after the August 16 rollout. During this time, the ML will be hooked up to the plumbing servicing the rocket with liquid oxygen, liquid hydrogen, helium, and liquid nitrogen.

Crawler-Transporter-2 (CT-2) during rollout testing. (Credit: NASA)

Other round systems required for the launch will also be activated while teams conduct system checks on the SLS and Orion. Should all go well, the stage will be set for the 60th overall launch — and the second flight to the Moon after Apollo 10 — from Pad 39B.

The Artemis 1 countdown is currently scheduled to begin with Call To Stations at 9:53 AM EDT (13:53 UTC) on August 27. Fueling would begin early in the morning of August 29 for a two-hour launch window opening at 8:33 AM EDT (12:33 UTC).

Overall, Artemis 1 has 25 days to launch after the flight termination system (FTS) testing on the launch vehicle was completed on August 12.

Should Artemis 1 not be able to launch on August 29, launch windows for September 2 and 5 are available.

The two-hour September 2 launch window starts at 12:48 PM EDT (16:48 UTC) while the September 5 window lasts for 90 minutes, starting at 5:12 PM EDT (21:12 UTC).

Should Artemis 1 not be able to make any of the launch windows, crawler-transporter 2 would return to Pad 39B to roll the stack back to the VAB for FTS replacement and any other work the vehicle or ML might need before the next available launch window, most likely October 17 through 31.

Together, the first two SLS/Orion Artemis missions will pave the way for the first human lunar landing since 1972 on Artemis 3, currently scheduled for no earlier than late 2025.

Artemis 3 will use the SLS and Orion to ferry astronauts to lunar orbit, where a waiting SpaceX Starship lander procured under the HLS contract will transport them to and from the surface near the Moon’s south pole.

Just under 50 years after humanity last left the Moon in December 1972, Artemis 1 stands ready to begin our return journey. This time, to stay.

(Lead photo: SLS basking in the morning sun at LC-39B. Credit: Stephen Marr for NSF)

Adblock test (Why?)

728x90x4

Source link

Continue Reading

News

Here’s how Helene and other storms dumped a whopping 40 trillion gallons of rain on the South

Published

 on

 

More than 40 trillion gallons of rain drenched the Southeast United States in the last week from Hurricane Helene and a run-of-the-mill rainstorm that sloshed in ahead of it — an unheard of amount of water that has stunned experts.

That’s enough to fill the Dallas Cowboys’ stadium 51,000 times, or Lake Tahoe just once. If it was concentrated just on the state of North Carolina that much water would be 3.5 feet deep (more than 1 meter). It’s enough to fill more than 60 million Olympic-size swimming pools.

“That’s an astronomical amount of precipitation,” said Ed Clark, head of the National Oceanic and Atmospheric Administration’s National Water Center in Tuscaloosa, Alabama. “I have not seen something in my 25 years of working at the weather service that is this geographically large of an extent and the sheer volume of water that fell from the sky.”

The flood damage from the rain is apocalyptic, meteorologists said. More than 100 people are dead, according to officials.

Private meteorologist Ryan Maue, a former NOAA chief scientist, calculated the amount of rain, using precipitation measurements made in 2.5-mile-by-2.5 mile grids as measured by satellites and ground observations. He came up with 40 trillion gallons through Sunday for the eastern United States, with 20 trillion gallons of that hitting just Georgia, Tennessee, the Carolinas and Florida from Hurricane Helene.

Clark did the calculations independently and said the 40 trillion gallon figure (151 trillion liters) is about right and, if anything, conservative. Maue said maybe 1 to 2 trillion more gallons of rain had fallen, much if it in Virginia, since his calculations.

Clark, who spends much of his work on issues of shrinking western water supplies, said to put the amount of rain in perspective, it’s more than twice the combined amount of water stored by two key Colorado River basin reservoirs: Lake Powell and Lake Mead.

Several meteorologists said this was a combination of two, maybe three storm systems. Before Helene struck, rain had fallen heavily for days because a low pressure system had “cut off” from the jet stream — which moves weather systems along west to east — and stalled over the Southeast. That funneled plenty of warm water from the Gulf of Mexico. And a storm that fell just short of named status parked along North Carolina’s Atlantic coast, dumping as much as 20 inches of rain, said North Carolina state climatologist Kathie Dello.

Then add Helene, one of the largest storms in the last couple decades and one that held plenty of rain because it was young and moved fast before it hit the Appalachians, said University of Albany hurricane expert Kristen Corbosiero.

“It was not just a perfect storm, but it was a combination of multiple storms that that led to the enormous amount of rain,” Maue said. “That collected at high elevation, we’re talking 3,000 to 6000 feet. And when you drop trillions of gallons on a mountain, that has to go down.”

The fact that these storms hit the mountains made everything worse, and not just because of runoff. The interaction between the mountains and the storm systems wrings more moisture out of the air, Clark, Maue and Corbosiero said.

North Carolina weather officials said their top measurement total was 31.33 inches in the tiny town of Busick. Mount Mitchell also got more than 2 feet of rainfall.

Before 2017’s Hurricane Harvey, “I said to our colleagues, you know, I never thought in my career that we would measure rainfall in feet,” Clark said. “And after Harvey, Florence, the more isolated events in eastern Kentucky, portions of South Dakota. We’re seeing events year in and year out where we are measuring rainfall in feet.”

Storms are getting wetter as the climate change s, said Corbosiero and Dello. A basic law of physics says the air holds nearly 4% more moisture for every degree Fahrenheit warmer (7% for every degree Celsius) and the world has warmed more than 2 degrees (1.2 degrees Celsius) since pre-industrial times.

Corbosiero said meteorologists are vigorously debating how much of Helene is due to worsening climate change and how much is random.

For Dello, the “fingerprints of climate change” were clear.

“We’ve seen tropical storm impacts in western North Carolina. But these storms are wetter and these storms are warmer. And there would have been a time when a tropical storm would have been heading toward North Carolina and would have caused some rain and some damage, but not apocalyptic destruction. ”

___

Follow AP’s climate coverage at https://apnews.com/hub/climate

___

Follow Seth Borenstein on Twitter at @borenbears

___

Associated Press climate and environmental coverage receives support from several private foundations. See more about AP’s climate initiative here. The AP is solely responsible for all content.

Source link

Continue Reading

Science

‘Big Sam’: Paleontologists unearth giant skull of Pachyrhinosaurus in Alberta

Published

 on

 

It’s a dinosaur that roamed Alberta’s badlands more than 70 million years ago, sporting a big, bumpy, bony head the size of a baby elephant.

On Wednesday, paleontologists near Grande Prairie pulled its 272-kilogram skull from the ground.

They call it “Big Sam.”

The adult Pachyrhinosaurus is the second plant-eating dinosaur to be unearthed from a dense bonebed belonging to a herd that died together on the edge of a valley that now sits 450 kilometres northwest of Edmonton.

It didn’t die alone.

“We have hundreds of juvenile bones in the bonebed, so we know that there are many babies and some adults among all of the big adults,” Emily Bamforth, a paleontologist with the nearby Philip J. Currie Dinosaur Museum, said in an interview on the way to the dig site.

She described the horned Pachyrhinosaurus as “the smaller, older cousin of the triceratops.”

“This species of dinosaur is endemic to the Grand Prairie area, so it’s found here and nowhere else in the world. They are … kind of about the size of an Indian elephant and a rhino,” she added.

The head alone, she said, is about the size of a baby elephant.

The discovery was a long time coming.

The bonebed was first discovered by a high school teacher out for a walk about 50 years ago. It took the teacher a decade to get anyone from southern Alberta to come to take a look.

“At the time, sort of in the ’70s and ’80s, paleontology in northern Alberta was virtually unknown,” said Bamforth.

When paleontogists eventually got to the site, Bamforth said, they learned “it’s actually one of the densest dinosaur bonebeds in North America.”

“It contains about 100 to 300 bones per square metre,” she said.

Paleontologists have been at the site sporadically ever since, combing through bones belonging to turtles, dinosaurs and lizards. Sixteen years ago, they discovered a large skull of an approximately 30-year-old Pachyrhinosaurus, which is now at the museum.

About a year ago, they found the second adult: Big Sam.

Bamforth said both dinosaurs are believed to have been the elders in the herd.

“Their distinguishing feature is that, instead of having a horn on their nose like a triceratops, they had this big, bony bump called a boss. And they have big, bony bumps over their eyes as well,” she said.

“It makes them look a little strange. It’s the one dinosaur that if you find it, it’s the only possible thing it can be.”

The genders of the two adults are unknown.

Bamforth said the extraction was difficult because Big Sam was intertwined in a cluster of about 300 other bones.

The skull was found upside down, “as if the animal was lying on its back,” but was well preserved, she said.

She said the excavation process involved putting plaster on the skull and wooden planks around if for stability. From there, it was lifted out — very carefully — with a crane, and was to be shipped on a trolley to the museum for study.

“I have extracted skulls in the past. This is probably the biggest one I’ve ever done though,” said Bamforth.

“It’s pretty exciting.”

This report by The Canadian Press was first published Sept. 25, 2024.

The Canadian Press. All rights reserved.

Source link

Continue Reading

News

The ancient jar smashed by a 4-year-old is back on display at an Israeli museum after repair

Published

 on

 

TEL AVIV, Israel (AP) — A rare Bronze-Era jar accidentally smashed by a 4-year-old visiting a museum was back on display Wednesday after restoration experts were able to carefully piece the artifact back together.

Last month, a family from northern Israel was visiting the museum when their youngest son tipped over the jar, which smashed into pieces.

Alex Geller, the boy’s father, said his son — the youngest of three — is exceptionally curious, and that the moment he heard the crash, “please let that not be my child” was the first thought that raced through his head.

The jar has been on display at the Hecht Museum in Haifa for 35 years. It was one of the only containers of its size and from that period still complete when it was discovered.

The Bronze Age jar is one of many artifacts exhibited out in the open, part of the Hecht Museum’s vision of letting visitors explore history without glass barriers, said Inbal Rivlin, the director of the museum, which is associated with Haifa University in northern Israel.

It was likely used to hold wine or oil, and dates back to between 2200 and 1500 B.C.

Rivlin and the museum decided to turn the moment, which captured international attention, into a teaching moment, inviting the Geller family back for a special visit and hands-on activity to illustrate the restoration process.

Rivlin added that the incident provided a welcome distraction from the ongoing war in Gaza. “Well, he’s just a kid. So I think that somehow it touches the heart of the people in Israel and around the world,“ said Rivlin.

Roee Shafir, a restoration expert at the museum, said the repairs would be fairly simple, as the pieces were from a single, complete jar. Archaeologists often face the more daunting task of sifting through piles of shards from multiple objects and trying to piece them together.

Experts used 3D technology, hi-resolution videos, and special glue to painstakingly reconstruct the large jar.

Less than two weeks after it broke, the jar went back on display at the museum. The gluing process left small hairline cracks, and a few pieces are missing, but the jar’s impressive size remains.

The only noticeable difference in the exhibit was a new sign reading “please don’t touch.”

The Canadian Press. All rights reserved.

Source link

Continue Reading

Trending