Connect with us

Science

Space tourism company ditches Elon Musk’s SpaceX, opts for Russian Soyuz instead – National Post

Published

 on


According to Space Adventures President Tom Shelley, a seat on the Russia spacecraft is in the range of $50 million to $60 million

Article content

In February 2020, the Virginia-based space tourism company Space Adventures announced a contract with Elon Musk’s SpaceX for a joint project, mission Crew Dragon, that would send four space tourists on a mission to a ‘relatively high Earth orbit’.

Advertisement

Article content

With experience in flying private individuals to the International Space Station (ISS), the company announced that its planned mission, scheduled for late 2021 to early 2022, would set a new “world altitude record for private citizen spaceflight” by flying at least twice as high as the station.

Earlier this month during a visit to Moscow, however, Space Adventures President Tom Shelley told AFP “ultimately our reservation with SpaceX expired and that’s not a mission that we are going to be executing in the immediate future.”

In an interview with Space News confirming the statement, company spokesperson Stacey Tearne said “the mission was marketed to a large number of our prospective customers, but ultimately the mix of price, timing and experience wasn’t right at that particular time.”

Advertisement

Article content

  1. This handout photo taken and released on October 5, 2021 by Russian Space Agency Roscosmos shows crew member actress Yulia Peresild reacting as her spacesuits is tested prior to the launch onboard the Soyuz MS-19 spacecraft at the Russian-leased Baikonur cosmodrome.

    Russian actor, director flying high after reaching ISS to attempt a world first: a movie in space

  2. William Shatner (CL) gets a hug from Blue Origin founder Jeff Bezos on October 13, 2021, after landing in the West Texas region, 25 miles (40kms) north of Van Horn.

    ‘There is Mother Earth’: William Shatner now the world’s oldest space traveler

Meanwhile, Space Adventures was working on another project with Russian space agency Roscosmos. Japanese billionaire Yusaku Maezawa, known for buying a SpaceX Starship flight around the moon in 2023, will be the first to travel to the ISS on a Russian Soyuz spacecraft, set to launch on December 8 from the Baikonur Cosmodrome in Kazakhstan.

According to Shelley, a seat on the Russia spacecraft is said to cost in the range of $50 million to $60 million.

The race to space is not a thing of the past. This now privatized business has created a competitive industry between multi-billion dollar companies and countries. Although Moscow and Washington’s relationship has been severed over a number of political issues, Shelley says that space was an exception.

Advertisement

Article content

“Cooperation in space in particular seems to somewhat transcend the political difficulties that exist between the United States and Russia,” he said.

Conflicting sentiments are abound concerning space tourism and exploration.

Days after Prince William, the Duke of Cambridge, claimed to the BBC that “great brains and minds should be trying to repair this planet, not trying to find the next place to go and live,” director of the United Nations Office for Outer Space Affairs Simonetta Di Pippo suggests differently.

While visiting Dubai’s Expo 2020, Di Pippo told The National that “space tourism has a lot of positives and can help inspire humanity to protect their planet. It’s really the attempt of bringing space closer to humanity and humanity closer to space.”

Advertisement

Comments

Postmedia is committed to maintaining a lively but civil forum for discussion and encourage all readers to share their views on our articles. Comments may take up to an hour for moderation before appearing on the site. We ask you to keep your comments relevant and respectful. We have enabled email notifications—you will now receive an email if you receive a reply to your comment, there is an update to a comment thread you follow or if a user you follow comments. Visit our Community Guidelines for more information and details on how to adjust your email settings.

Adblock test (Why?)



Source link

Continue Reading

Science

BEYOND LOCAL: NASA launches spacecraft to test asteroid defense concept – BayToday

Published

 on


LOS ANGELES (AP) — NASA launched a spacecraft Tuesday night on a mission to smash into an asteroid and test whether it would be possible to knock a speeding space rock off course if one were to threaten Earth.

The DART spacecraft, short for Double Asteroid Redirection Test, lifted off from Vandenberg Space Force Base atop a SpaceX Falcon 9 rocket in a $330 million project with echoes of the Bruce Willis movie “Armageddon.”

If all goes well, the boxy, 1,200-pound (540-kilogram) craft will slam head-on into Dimorphos, an asteroid 525 feet (160 meters) across, at 15,000 mph (24,139 kph) next September.

“This isn’t going to destroy the asteroid. It’s just going to give it a small nudge,” said mission official Nancy Chabot of Johns Hopkins Applied Physics Laboratory, which is managing the project.

Dimorphos orbits a much larger asteroid called Didymos. The pair are no danger to Earth but offer scientists a better way to measure the effectiveness of a collision than a single asteroid flying through space.

Dimorphos completes one orbit of Didymos every 11 hours, 55 minutes. DART’s goal is a crash that will slow Dimorphos down and cause it to fall closer toward the bigger asteroid, shaving 10 minutes off its orbit.

The change in the orbital period will be measured by telescopes on Earth. The minimum change for the mission to be considered a success is 73 seconds.

The DART technique could prove useful for altering the course of an asteroid years or decades before it bears down on Earth with the potential for catastrophe.

A small nudge “would add up to a big change in its future position, and then the asteroid and the Earth wouldn’t be on a collision course,” Chabot said.

Scientists constantly search for asteroids and plot their courses to determine whether they could hit the planet.

“Although there isn’t a currently known asteroid that’s on an impact course with the Earth, we do know that there is a large population of near-Earth asteroids out there,” said Lindley Johnson, planetary defense officer at NASA. “The key to planetary defense is finding them well before they are an impact threat.”

DART will take 10 months to reach the asteroid pair. The collision will occur about 6.8 million miles (11 million kilometers) from Earth.

Ten days beforehand, DART will release a tiny observation spacecraft supplied by the Italian space agency that will follow it.

DART will stream video until it is destroyed on impact. Three minutes later, the trailing craft will make images of the impact site and material that is ejected.

John Antczak, The Associated Press

Adblock test (Why?)



Source link

Continue Reading

Science

Doing Photon Upconversion A Solid: Crystals That Convert Light To More Useful Wavelengths – Eurasia Review

Published

 on


Solid-solution organic crystals have been brought into the quest for superior photon upconversion materials, which transform presently wasted long-wavelength light into more useful shorter wavelength light. Scientists from Tokyo Institute of Technology revisited a materials approach previously deemed lackluster—using a molecule originally developed for organic LEDs—achieving outstanding performance and efficiency. Their findings pave the way for many novel photonic technologies, such as better solar cells and photocatalysts for hydrogen and hydrocarbon productions.

Light is a powerful source of energy that can, if leveraged correctly, be used to drive stubborn chemical reactions, generate electricity, and run optoelectronic devices. However, in most applications, not all the wavelengths of light can be used. This is because the energy that each photon carries is inversely proportional to its wavelength, and chemical and physical processes are triggered by light only when the energy provided by individual photons exceeds a certain threshold.

This means that devices like solar cells cannot benefit from all the color contained in sunlight, as it comprises a mixture of photons with both high and low energies. Scientists worldwide are actively exploring materials to realize photon upconversion (PUC), by which photons with lower energies (longer wavelengths) are captured and re-emitted as photons with higher energies (shorter wavelengths). One promising way to realize this is through triplet-triplet annihilation (TTA). This process requires the combination of a sensitizer material and an annihilator material. The sensitizer absorbs low energy photons (long-wavelength light) and transfers its excited energy to the annihilator, which emits higher energy photons (light of shorter wavelength) as a result of TTA (Figure 1).

Finding good solid materials for PUC has proven challenging for a long time. Although liquid samples can achieve relatively high PUC efficiency, working with liquids, especially those comprising organic solvents, is inherently risky and cumbersome in many applications. However, previous trials to create PUC solids generally suffered from poor crystal quality and small crystal domains, which lead to short travelling distances of triplet excited states and thus, low PUC efficiency. Additionally, in most previous solid PUC samples, stability under continuous photoirradiation was not tested and experimental data were often acquired in inert gas atmospheres. Hence, the low efficiency and insufficient materials stability had been of concern for a long time.

Now, in a recent study led by Associate Professor Yoichi Murakami from Tokyo Tech, Japan, a team of researchers found the answer to this challenge. Published in Materials Horizon, their paper (open access) describes how they focused on van der Waals crystals, a classical materials class that has not been considered for the quest of high-efficiency PUC solids. After discovering that 9-(2-naphthyl)-10-[4-(1-naphthyl)phenyl]anthracene (ANNP), a hydrocarbon molecule originally developed for blue organic LEDs, was an excellent annihilator for embodying their concept, they tried mixing it with platinum octaethylporphyrin (PtOEP), a staple sensitizer that absorbs green light.

The team found that aggregation of the sensitizer molecules could be completely avoided by utilizing the crystalline phase of a van der Waals solid solution with a sufficiently low proportion of PtOEP to ANNP (around 1:50000). They proceeded to thoroughly characterize the obtained crystals and found some insight into why using the ANNP annihilator prevented the aggregation of the sensitizer when other existing annihilators had failed to do so in previous studies. Moreover, the solid crystals the team produced were highly stable and exhibited outstanding performance, as Dr. Murakami remarks: “The results of our experiments using simulated sunlight indicate that solar concentration optics such as lenses are no longer needed to efficiently upconvert terrestrial sunlight.”

Overall, this study brings van der Waals crystals back into the game of PUC as an effective way of creating outstanding solid materials using versatile hydrocarbon annihilators. “The proof-of-concept we presented in our paper is a major technical leap forward in the quest for high-performance PUC solids, which will open up diverse photonics technologies in the future,” concludes Dr. Murakami. Let us hope further research in this topic allows us to efficiently transform light into its most useful forms.

Adblock test (Why?)



Source link

Continue Reading

Science

New Russian module docks with International Space Station – CGTN

Published

 on


A Soyuz rocket carrying the Progress cargo spacecraft and the Prichal node module lifts off from a launch pad at the Baikonur Cosmodrome, Kazakhstan, November 24, 2021. /CFP

A Soyuz rocket carrying the Progress cargo spacecraft and the Prichal node module lifts off from a launch pad at the Baikonur Cosmodrome, Kazakhstan, November 24, 2021. /CFP

A Russian cargo craft carrying a new docking module successfully hooked up with the International Space Station Friday after a two-day space journey.

The new spherical module, named Prichal (Pier), docked with the orbiting outpost at 6:19 p.m. Moscow time (1519 GMT). It has six docking ports and will allow potential future expansion of the Russian segment of the station.

The module has moored to the docking port of the new Russian Nauka (Science) laboratory module.

On Wednesday, a Soyuz rocket took off from the Russian launch facility in Baikonur, Kazakhstan, carrying the Progress cargo ship with Prichal attached to it. After entering space, the cargo ship with the module went into orbit.

Progress is also delivering 700 kilograms of various cargoes to the space station and is expected to undock from the station on December 22.

The first Soyuz spacecraft is expected to dock at the new module on March 18, 2022, with a crew of three cosmonauts: Oleg Artemyev, Denis Matveev and Sergei Korsakov.

Earlier this week, the Russian crew on the station started training for the module’s arrival, simulating the use of manual controls in case the automatic docking system failed.

The space outpost is currently operated by NASA astronauts Raja Chari, Thomas Marshburn, Kayla Barron, and Mark Vande Hei; Russian cosmonauts Anton Shkaplerov and Pyotr Dubrov; and Matthias Maurer of the European Space Agency.

Source(s): AP

Adblock test (Why?)



Source link

Continue Reading

Trending