Connect with us

Science

Still Alive! NASA’s InSight Lander Waits Out Martian Dust Storm

Published

 on

NASA’s InSight Mars lander took this final selfie on April 24, 2022, the 1,211th Martian day, or sol, of the mission. The lander’s solar panels have become covered with dust since the lander touched down on Mars in November 2018, which has led to a gradual decline in its power level. Credit: NASA/JPL-Caltech

 

InSight’s team is taking steps to help the solar-powered lander continue operating for as long as possible.

Recently, <span class=”glossaryLink” aria-describedby=”tt” data-cmtooltip=”

Genius Dog 336 x 280 - Animated
NASA
Established in 1958, the National Aeronautics and Space Administration (NASA) is an independent agency of the United States Federal Government that succeeded the National Advisory Committee for Aeronautics (NACA). It is responsible for the civilian space program, as well as aeronautics and aerospace research. Its vision is &quot;To discover and expand knowledge for the benefit of humanity.&quot; Its core values are &quot;safety, integrity, teamwork, excellence, and inclusion.&quot;

” data-gt-translate-attributes=”[“attribute”:”data-cmtooltip”, “format”:”html”]”>NASA’s InSight mission, which is expected to end in the near future, saw a drop in power generated by its solar panels as a continent-size dust storm swirls over <span class=”glossaryLink” aria-describedby=”tt” data-cmtooltip=”

Mars
Mars is the second smallest planet in our solar system and the fourth planet from the sun. It is a dusty, cold, desert world with a very thin atmosphere. Iron oxide is prevalent in Mars’ surface resulting in its reddish color and its nickname &quot;The Red Planet.&quot; Mars’ name comes from the Roman god of war.

” data-gt-translate-attributes=”[“attribute”:”data-cmtooltip”, “format”:”html”]”>Mars’ southern hemisphere. First observed on September 21, 2022, by NASA’s Mars Reconnaissance Orbiter (MRO), the storm is roughly 2,175 miles (3,500 kilometers) from InSight and initially had little impact on the lander.

InSight launched on an Atlas V-401 rocket from Vandenberg Air Force Base in California on May 5, 2018. After a six-month cruise, InSight landed on Mars on November 26, 2018. After a safe landing, InSight deployed its instruments in preparation for surface operations. The lander began its day-to-day science activities about 30 days into the mission.

The mission carefully monitors the lander’s power level, which has been declining steadily as dust accumulates on its solar arrays. By Monday, October 3, the storm had grown large enough and was lofting so much dust that the thickness of the dusty haze in the Martian atmosphere had increased by nearly 40% around InSight. With less sunlight reaching the lander’s solar panels, its energy fell from 425 watt-hours per Martian day, or sol, to just 275 watt-hours per sol.

 

Lately, InSight’s seismometer has been operating for about 24 hours every other Martian day. However, with the drop in solar power, there is not enough energy generation to completely charge the batteries every sol. In fact, at the current rate of discharge, the lander would only be able to operate for several weeks. Therefore, to conserve energy, the mission will turn off InSight’s seismometer for the next two weeks.

“We were at about the bottom rung of our ladder when it comes to power. Now we’re on the ground floor,” said InSight’s project manager, Chuck Scott of NASA’s Jet Propulsion Laboratory (<span class=”glossaryLink” aria-describedby=”tt” data-cmtooltip=”

JPL
The Jet Propulsion Laboratory (JPL) is a federally funded research and development center that was established in 1936. It is owned by NASA and managed by the California Institute of Technology (Caltech). The laboratory’s primary function is the construction and operation of planetary robotic spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network. JPL implements programs in planetary exploration, Earth science, space-based astronomy and technology development, while applying its capabilities to technical and scientific problems of national significance.

” data-gt-translate-attributes=”[“attribute”:”data-cmtooltip”, “format”:”html”]”>JPL) in Southern California. “If we can ride this out, we can keep operating into winter – but I’d worry about the next storm that comes along.”

Based on predictions of how much the dust on its solar panels will reduce its power generation, the team had estimated that InSight’s mission would end sometime between late October of this year and January 2023. Long since surpassing its primary mission, the lander is now close to the end of its extended mission, conducting “bonus science” by measuring marsquakes, which reveal details about the deep interior of the Red Planet.

 

Mars Dust Storm in Relation to InSight, Curiosity and Perseverance

The beige clouds seen in this global map of Mars are a continent-size dust storm captured on September 29, 2022, by the Mars Climate Imager camera aboard NASA’s Mars Reconnaissance Orbiter. NASA’s Perseverance, Curiosity, and InSight missions are labeled, showing the vast distances between them. Credit: NASA/JPL-Caltech/MSSS

Studying Martian Storms

There are signs that this large, regional storm has peaked and entered its decay phase: MRO’s Mars Climate Sounder instrument, which measures the heating caused by dust absorbing sunlight, sees the storm’s growth slowing down. And the dust-raising clouds observed in pictures from the orbiter’s Mars Color Imager camera, which creates daily global maps of the Red Planet and was the first instrument to spot the storm, are not expanding as rapidly as before.

This regional storm isn’t a surprise: It’s the third storm of its kind that’s been seen this year. In fact, Mars dust storms occur at all times of the Martian year, although more of them – and bigger ones – occur during northern fall and winter, which is coming to an end.

Mars dust storms aren’t as violent or dramatic as Hollywood portrays them. While winds can blow up to 60 miles per hour (97 kilometers per hour), the Martian air is thin enough that it has just a fraction of the strength of storms on Earth. Mostly, the storms are messy: They toss billowing dust high into the atmosphere, which slowly drops back down, sometimes taking weeks.

 

On rare occasions, scientists have seen dust storms grow into planet-encircling dust events, which cover almost all of Mars. One of these planet-size dust storms brought NASA’s solar-powered Opportunity rover to an end in 2018.

Because they’re nuclear-powered, NASA’s Curiosity and Perseverance rovers have nothing to worry about in terms of a dust storm affecting their energy. But the solar-powered Ingenuity helicopter has noticed the overall increase in background haze.

Besides monitoring storms for the safety of NASA missions on the Martian surface, MRO has spent 17 years collecting invaluable data about how and why these storms form. “We’re trying to capture the patterns of these storms so we can better predict when they’re about to happen,” Zurek said. “We learn more about Mars’ atmosphere with each one we observe.”

More About the Mission

NASA’s Jet Propulsion Laboratory (JPL), a division of the California Institute of Technology (Caltech) in Pasadena, California, manages InSight for the agency’s Science Mission Directorate in Washington. InSight is part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supports spacecraft operations for the mission.

 

A number of European partners, including France’s Centre National d’Études Spatiales (CNES) and the German Aerospace Center (DLR), are supporting the InSight mission. CNES provided the Seismic Experiment for Interior Structure (SEIS) instrument to NASA, with the principal investigator at IPGP (Institut de Physique du Globe de Paris). Significant contributions for SEIS came from IPGP; the Max Planck Institute for Solar System Research (MPS) in Germany; the Swiss Federal Institute of Technology (ETH Zurich) in Switzerland; <span class=”glossaryLink” aria-describedby=”tt” data-cmtooltip=”

Imperial College London
Established on July 8, 1907, by Royal Charter, Imperial College London is a public research university in London with a focus on science, engineering, medicine, and business. Its main campus is located in South Kensington, and it has an innovation campus in White City, a research field station at Silwood Park, and teaching hospitals throughout London. Its full legal name is the Imperial College of Science, Technology and Medicine.

” data-gt-translate-attributes=”[“attribute”:”data-cmtooltip”, “format”:”html”]”>Imperial College London and Oxford University in the United Kingdom; and JPL. DLR provided the Heat Flow and Physical Properties Package (HP3) instrument, with significant contributions from the Space Research Center (CBK) of the Polish Academy of Sciences and Astronika in Poland. Spain’s Centro de Astrobiología (CAB) supplied the temperature and wind sensors.

JPL also manages MRO and its Mars Climate Sounder instrument for NASA’s Science Mission Directorate in Washington. Lockheed Martin Space built MRO. The Mars Climate Imager camera, or MARCI, was built and is managed by Malin Space Science Systems in San Diego.

 

Source link

Continue Reading

Science

Discovery Of World's Oldest DNA Breaks Record By One Million Years – Forbes

Published

 on


Microscopic fragments of DNA were found in Ice Age sediment in northern Greenland. Using cutting-edge technology, researchers discovered the fragments are one million years older than the previous record for DNA sampled from a Siberian mammoth bone.

The discovery was made by a team of scientists led by Professor Eske Willerslev and Professor Kurt H. Kjær. Professor Willerslev is a Fellow of St John’s College, University of Cambridge, and Director of the Lundbeck Foundation GeoGenetics Center at the University of Copenhagen where Professor Kjær, a geology expert, is also based.

“A new chapter spanning one million extra years of history has finally been opened and for the first time we can look directly at the DNA of a past ecosystem that far back in time,” so Professor Willerslev commenting the discovery.

Genius Dog 336 x 280 - Animated

“DNA can degrade quickly but we’ve shown that under the right circumstances, we can now go back further in time than anyone could have dared imagine.”

Professor Kjær adds that “the ancient DNA samples were found buried deep in sediment that had built-up over 20,000 years. The sediment was eventually preserved in ice or permafrost and, crucially, not disturbed by humans for two million years.”

The incomplete samples, a few millionths of a millimeter long DNA strings, were taken from the København Formation, a sediment formation almost 100 meters thick deposited in the shallow area of a fjord in Greenland’s northernmost point. The climate in Greenland at the time of sedimentation was between 10 to 17 degrees warmer than today, sustaining an ecosystem with no present-day equivalent, resembling a mix of temperate forest and mixed-grass prairie.

Detective work by 40 researchers from Denmark, the UK, France, Sweden, Norway, the U.S. and Germany, unlocked the secrets of the fragments of DNA. The process was painstaking – first they needed to establish whether there was DNA hidden in the sediment, and if there was, could they successfully detach the DNA from the mineral grains – like clay particles and quartz crystals – to examine it? The answer, eventually, was yes. The researchers compared every single DNA fragment with extensive libraries of DNA collected from present-day animals, plants and microorganisms.

The scientists discovered evidence of animals, plants and microorganisms including reindeer, hares, lemmings, birch and poplar trees. They even found that Mastodon, an Ice Age elephant, roamed as far as Greenland before later becoming extinct. Previously it was thought the range of the species did not extend from its known origins of North and Central America.

Some of the DNA fragments were easy to classify as predecessors to present-day species, others could only be linked at genus level, and some originated from species impossible to place in the DNA libraries of animals, plants and microorganisms still living today.

The findings have opened up a whole new period in DNA detection. Thanks to a new generation of extraction and sequencing equipment, researchers will be able to locate and identify extremely small and damaged fragments of genetic information in sediments considered previously unfit for DNA preservation.

“DNA generally survives best in cold, dry conditions such as those that prevailed during most of the period since the material was deposited at Kap København. Now that we have successfully extracted ancient DNA from clay and quartz, it may be possible that clay may have preserved ancient DNA in warm, humid environments in sites found in Africa,” Professor Willerslev concludes.

The paper “A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA” is published in Nature. Material provided by the by University of Cambridge.

Adblock test (Why?)



Source link

Continue Reading

Science

NASA posts high-resolution images of Orion’s final lunar flyby

Published

 on

Orion just made its final pass around the moon on its way to Earth, and NASA has released some of the spacecraft’s best photos so far. Taken by a high-resolution camera (actually a heavily modified GoPro Hero 4) mounted on the tip of Orion’s solar arrays, they show the spacecraft rounding the Moon then getting a closeup shot of the far side.

The photos Orion snapped on its first near pass to the Moon were rather grainy and blown out, likely because they were captured with Orion’s Optical Navigation Camera rather than the solar array-mounted GoPros. Other GoPro shots were a touch overexposed, but NASA appears to have nailed the settings with its latest series of shots.

Space photos were obviously not the primary goal of the Artemis I mission, but they’re important for public relations, as NASA learned many moons ago. It was a bit surprising that NASA didn’t show some high-resolution closeups of the Moon’s surface when it passed by the first time, but better late than never.

Orion’s performance so far has been “outstanding,” program manager Howard Hu told reporters last week. It launched on November 15th as part of the Artemis 1 mission atop NASA’s mighty Space Launch System. Days ago, the craft completed a three and a half minute engine burn (the longest on the trip so far) to set it on course for a splashdown on December 11th.

Genius Dog 336 x 280 - Animated

The next mission, Artemis II, is scheduled in 2024 to carry astronauts on a similar path to Artemis I without landing on the moon. Then, humans will finally set foot on the lunar surface again with Artemis III, slated for launch in 2025.

Source link

Continue Reading

Science

Biosignatures: Discovery Of Earth’s Oldest DNA Breaks Record By One Million Years

Published

 on

Taxonomic profiles of the plant assemblage found in the metagenomes. Taxa in bold are genera only found as DNA and not as macrofossil or pollen. Asterisks indicate those that are found at other Pliocene Arctic sites. Extinct species as identified by either macrofossils or phylogenetic placements are marked with a dagger. Reads classified as Pyrus and Malus are marked with a pound symbol, and are probably over-classified DNA sequences belonging to another species within Rosaceae that are not present as a reference genome. — University of Cambridge

Two-million-year-old DNA has been identified for the first time – opening a ‘game-changing’ new chapter in the history of evolution.

 

Microscopic fragments of environmental DNA were found in Ice Age sediment in northern Greenland. Using cutting-edge technology, researchers discovered the fragments are one million years older than the previous record for DNA sampled from a Siberian mammoth bone.

The ancient DNA has been used to map a two-million-year-old ecosystem which weathered extreme climate change. Researchers hope the results could help to predict the long-term environmental toll of today’s global warming.

Genius Dog 336 x 280 - Animated

The discovery was made by a team of scientists led by Professor Eske Willerslev and Professor Kurt H. Kjær. Professor Willerslev is a Fellow of St John’s College, University of Cambridge, and Director of the Lundbeck Foundation GeoGenetics Centre at the University of Copenhagen where Professor Kjær, a geology expert, is also based.

The results of the 41 usable samples found hidden in clay and quartz are published today (7 DECEMBER 2022) in Nature.

Professor Willerslev said: “A new chapter spanning one million extra years of history has finally been opened and for the first time we can look directly at the DNA of a past ecosystem that far back in time..

“DNA can degrade quickly but we’ve shown that under the right circumstances, we can now go back further in time than anyone could have dared imagine.”

Professor Kjær said: “The ancient DNA samples were found buried deep in sediment that had built-up over 20,000 years. The sediment was eventually preserved in ice or permafrost and, crucially, not disturbed by humans for two million years.”

The incomplete samples, a few millionths of a millimetre long, were taken from the København Formation, a sediment deposit almost 100 metres thick tucked in the mouth of a fjord in the Arctic Ocean in Greenland’s northernmost point. The climate in Greenland at the time varied between Arctic and temperate and was between 10-17C warmer than Greenland is today. The sediment built up metre by metre in a shallow bay.

Scientists discovered evidence of animals, plants and microorganisms including reindeer, hares, lemmings, birch and poplar trees. Researchers even found that Mastodon, an Ice Age mammal, roamed as far as Greenland before later becoming extinct. Previously it was thought the range of the elephant-like animals did not extend as far as Greenland from its known origins of North and Central America.

Detective work by 40 researchers from Denmark, the UK, France, Sweden, Norway, the USA and Germany, unlocked the secrets of the fragments of DNA. The process was painstaking – first they needed to establish whether there was DNA hidden in the clay and quartz, and if there was, could they successfully detach the DNA from the sediment to examine it? The answer, eventually, was yes. The researchers compared every single DNA fragment with extensive libraries of DNA collected from present-day animals, plants and microorganisms. A picture began to emerge of the DNA from trees, bushes, birds, animals and microorganisms.

Some of the DNA fragments were easy to classify as predecessors to present-day species, others could only be linked at genus level, and some originated from species impossible to place in the DNA libraries of animals, plants and microorganisms still living in the 21st century.

The two-million-year-old samples also help academics build a picture of a previously unknown stage in the evolution of the DNA of a range of species still in existence today.

Professor Kjær said: “Expeditions are expensive and many of the samples were taken back in 2006 when the team were in Greenland for another project, they have been stored ever since.

“It wasn’t until a new generation of DNA extraction and sequencing equipment was developed that we’ve been able to locate and identify extremely small and damaged fragments of DNA in the sediment samples. It meant we were finally able to map a two-million-year-old ecosystem.”

Assistant Professor Mikkel W. Pedersen, co-first author on the paper and also based at the Lundbeck Foundation GeoGenetics Centre, said: “The Kap København ecosystem, which has no present-day equivalent, existed at considerably higher temperatures than we have today – and because, on the face of it, the climate seems to have been similar to the climate we expect on our planet in the future due to global warming.

“One of the key factors here is to what degree species will be able to adapt to the change in conditions arising from a significant increase in temperature. The data suggests that more species can evolve and adapt to wildly varying temperatures than previously thought. But, crucially, these results show they need time to do this. The speed of today’s global warming means organisms and species do not have that time so the climate emergency remains a huge threat to biodiversity and the world – extinction is on the horizon for some species including plants and trees.”

While reviewing the ancient DNA from the Kap København Formation, the researchers also found DNA from a wide range of microorganisms, including bacteria and fungi, which they are continuing to map. A detailed description of how the interaction – between animals, plants and single-cell organisms – within the former ecosystem at Greenland’s northernmost point worked biologically will be presented in a future research paper.

It is now hoped that some of the ‘tricks’ of the two-million-year-old plant DNA discovered may be used to help make some endangered species more resistant to a warming climate.

Professor Kjær said: “It is possible that genetic engineering could mimic the strategy developed by plants and trees two million years ago to survive in a climate characterised by rising temperatures and prevent the extinction of some species, plants and trees. This is one of the reasons this scientific advance is so significant because it could reveal how to attempt to counteract the devastating impact of global warming.”

The findings from the Kap København Formation in Greenland have opened up a whole new period in DNA detection.

Professor Willerslev explained: “DNA generally survives best in cold, dry conditions such as those that prevailed during most of the period since the material was deposited at Kap København. Now that we have successfully extracted ancient DNA from clay and quartz, it may be possible that clay may have preserved ancient DNA in warm, humid environments in sites found in Africa.

“If we can begin to explore ancient DNA in clay grains from Africa, we may be able to gather ground-breaking information about the origin of many different species – perhaps even new knowledge about the first humans and their ancestors – the possibilities are endless.”

 

Astrobiology

Source link

Continue Reading

Trending